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Abstract

In this project, an incremental checkpointing mechanism is developed for Java. By making the
abstraction that program state is the state of variables, this checkpointing mechanism gives the
assurance that the program can be rolled back to its previous state when error occurs. A language
construct that ensures this data integrity is invented with a syntax similar to Java’s try-catch-
finally construct. Transformation from a program written with this new construct to a native Java
program is studied. An tool is implemented to automate this transformation.

1 The Problem of Maintaining Program State

Exceptions as a language feature are supported by a number of contemporary programming languages.
The use of exceptions and the corresponding try-catch-finally construct simplifies error handling in
programs.

However, correct use of the try-catch-finally construct does not guarantee correct handling of ex-
ceptions. Although the program execution recovers from the exception, the program state may be
inconsistent from that point. Figure 1 shows a program fragment in Java. It may invalidate its execu-
tion state after the occurrence of an IO exception. This code tries to read from an input stream, and
then append the received data to the non-empty buffer. However, if an IOException happens in the
loop, the execution of the loop will not be complete. Though the exception is caught and handled, the
state of the program, which includes buffer and bufIndex in this case, is no longer consistent. What
the programmer really wants is to read the data into the buffer, but if the read is not complete, neither
the buffer nor its index should be changed, as if no read operation were issued.

A simple-minded attempt to correct the problem results in another program in Figure 2. This time, a
full backup of the program state is created before the try block is entered. If an IOException occurs, the
program state is restored with the backup. However, this modification only partly solves the problem.
The (*) statement is problematic. If the reference of buffer was copied to another variable before,

int[] buffer = ... // A buffer

int bufIndex = 0; // The current index of the buffer

...

bufIndex = ... // Current location of the buffer (not empty)

...

try {

InputStreamReader reader = ... // An input stream reader

int i; // Variable to hold input value

do {

i = reader.read();

if (i != -1)

buffer[bufIndex++] = i; // Add the input to the buffer

} while (i != -1); // Until EOF

} catch (IOException e) {

...

}

Figure 1: A simple program that may invalidate its state in case of exception
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int[] buffer = ... // A buffer

int bufIndex = 0; // The current index of the buffer

...

bufIndex = ... // Current location of the buffer (not empty)

...

int[] backupBuffer = (int[])buffer.clone();

int backupBufIndex = bufIndex;

try {

InputStreamReader reader = ... // An input stream reader

int i; // Variable to hold input value

do {

i = reader.read();

if (i != -1)

buffer[bufIndex++] = i; // Add the input to the buffer

} while (i != -1); // Until EOF

} catch (IOException) {

...

buffer = backupBuffer; // (*)

bufIndex = backupBufIndex;

}

Figure 2: The modified version of the simple program that may still violate its state

STATEMENT ::= ... | BLOCK | SAFE

BLOCK ::= { STATEMENT* }

SAFE ::= safe BLOCK

Figure 3: Partial language definition of the safe block

that variable still points to the old buffer after (*), so the program state is still inconsistent. A correct
solution would require (*) to be replaced with: System.arraycopy(backupBuffer, 0, buffer, 0,
backupBuffer.length);.

However, even if the final solution to this simple example is found without much difficulty, we
may still question the practicality of this ad-hoc approach in general. First of all, this requires the
programmer to identify the program state that should be kept consistent, and then write the correct
code to maintain this consistency. If this is not done correctly, the erroneous result may not be observable
immediately, leading to a mysterious crash at a later time. Secondly, the correct code is too inefficient.
It requires a copy of the whole array every time the try block executes successfully, and two copies in
case of an IOException. If the array is large and the update in the try block affects only a relatively
small area, much of this copying is wasted.

2 A Language Approach

The fix in the last example is very ad-hoc. If the program is large, no correctness assurance can be
given. In this section, we will invent a new Java construct that automates error handling and provides
the assurance.

2.1 A syntax and an informal semantics

If we review the try-catch-finally construct in Java, it is not hard to see that it only regards program
control, while ignoring the data. Because programs are made up of data and control, a new language
construct that takes data into account will compensate for this.

Figure 3 shows part of the language definition with a construct called “safe block” added. A
statement in this language can be any legal Java statement (including block), or a safe block. A block
is a compound statement that contains 0 or more statement between curly brackets. A safe block
contains a block as its body, preceded by the “safe” keyword.

To explain its semantics informally, we first take a look at the control flow. The program execution
enters the safe block naturally when it is reached. However, there are two paths on which a safe block
is exited. If all the statements in the block complete successfully (i.e., all the exceptions, if any, are
caught), the block is exited normally. On the contrary, if an exception occurs in one of the statements
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and it is not caught by any catch clause, the execution of the safe block terminates, and the control is
returned to the surrounding context. In this sense, the safe block does not affect the program control,
as if it were just a Java block. However, a safe block differs from a block in that it guarantees that
the program state is restored if the control leaves with an exception. By this means, invariants about
program state are maintained.

2.2 A formal semantics

A more formal semantics requires a definition on program state at first. In this work, we define program
state as such:

Program state at a time in execution is the transitive closure of all the private non-
static variables visible to the program at that time.

We do not consider local variables in program state, because they are usually transient, and we
can always turn them into private variables (possibly with renaming). We do not consider public or
protected variables to be program state, either. This is because it is generally not a good practice to
keep state that needs to be consistent with public or protected variables. To allow access from other
classes while keeping them private, we can add getter and setter methods for them.1

In operational semantics, we use σ ∈ Σ to denote program state. We do not consider creation of
variables, because we can regard an assignment to a fresh variable to be an update on the variable
with a default value. Function except(σ) : Σ → {true, false} takes a program state as parameter,
and returns true if there are uncaught exceptions in the state, or false otherwise. Remind that the
operational semantics of command c is denoted with < c, σ >⇓ σ′, where σ is the initial state, and σ′

is the new state after the execution of c. The operational semantics of the block construct is:
< c1, σ >⇓ σ′′ except(σ′′) = false < c2, σ

′′ > ⇓ σ′

< c1; c2, σ >⇓ σ′ (1)

< c1, σ >⇓ σ′ except(σ′) = true

< c1; c2, σ >⇓ σ′ (2)

< c1; c2; . . . ; cn, σ >⇓ σ′

< {c1; c2; . . . ; cn}, σ >⇓ σ′ (3)

The operational semantics of the safe block can thus be defined as:
< {c1; c2; . . . ; cn}, σ >⇓ σ′ except(σ′) = false

< safe {c1; c2; . . . ; cn}, σ >⇓ σ′ (4)

< {c1; c2; . . . ; cn}, σ >⇓ σ′ except(σ′) = true

< safe {c1; c2; . . . ; cn}, σ >⇓ σ
(5)

Rule 4 applies when the safe block is executed without any uncaught exception. In that case, the
new state of the program is the same as the new state σ′ returned by the block. If uncaught exceptions
are found in the new state σ′, rule 5 enforces a rollback to the initial state σ, as if the commands in the
block were not executed.

3 Implementation Mechanisms

The formal semantics defined in the last section does not specify how the safe block is implemented.
Rule 5 is a strange one because it requires the state after the execution of the safe block to remain the
same as the initial state σ, even if some commands in the block are executed successfully. I.e., the new
state of the safe block cannot be derived from the pre-conditions over the line in rule 5. The occurrence
of exceptions in the block is unpredictable. For a sequential program to be executed according to this
semantics, there must be some mechanism to make sure that it is possible to rollback to the initial state
once a safe block is entered.

1Later in this paper, we will use an automatic analysis tool to analyze change of program state. If we include public

or protected fields in program state, the analysis becomes much more complex, since inter-class access must also be
considered. This is another reason for restricting our scope to private fields.
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Checkpointing technique can be used as an implementation mechanism. When the safe block is
entered, a checkpoint is created, which refers to the program state at that time. Later, the checkpoint
created earlier can be used to restore the program state in case of exception. There are different
checkpointing strategies. We will first discuss snapshot checkpointing, and then elaborate on incremental
checkpointing.

3.1 Snapshot checkpointing

An obvious approach is to take a snapshot of the program state at the time when a safe block is entered.
The simulator or the executing program keeps the snapshot at a secret place so that the commands
in the block will not modify it. If an uncaught exception occurs, the snapshot is used to restore the
program state; otherwise, the snapshot is simply discarded. It is convenient to store the snapshots in
the stack, because this allows hierarchical safe blocks in subsequent method invocations.

A problem of this approach is identifying the range of a snapshot. A snapshot should include all the
variables that may be modified in the block. It is safe to create snapshots for all the declared variables,
because the set of modified variables always form a subset. However, this results in very inefficient
execution. It is also unnecessary in most cases, because only very few of them are actually modified. It
is possible to reduce the snapshot size if we can predict which variables will be modified, or if we can
find a smaller superset of the modified variables. This can be partly achieved by using a static program
analyzer. Unfortunately, because static analysis is conservative, the snapshot size is still very big.2

3.2 Incremental checkpointing

Compared to snapshot checkpointing, incremental checkpointing has a different flavor in that it does
not require a snapshot at the time when checkpoint is created. At the checkpoint creation, virtually
nothing needs to be done, except that a flag is set with the current execution timestamp. When the
variables are modified in the safe block, the modifying operation is captured in some way, and the old
values are backed up right before the modification. I.e., the backup of the program state is carried out
incrementally as the commands are being executed.

Let us now consider the assignment statement. In operational semantics, assignment can be defined
with the following rule:

< e, σ >⇓ n

< x := e, σ >⇓ σ[x := n]
(6)

This rule means, if expression e is evaluated to number n in state σ, then the new state after
executing command x := e in state σ is the same as σ, except that the value of x becomes n.

We now introduce a new symbol ϕ to denote the state of our checkpoint object. A new checkpoint
object is created every time we create an incremental checkpoint. ϕ[x := n] means to record x’s old
value n in the checkpoint object before x is modified. We redefine the assignment rule with ϕ added to
the state:

< e, (σ, ϕ) >⇓ n σ(x) = n0 ϕ(x) = undefined

< x := e, (σ, ϕ) >⇓ (σ[x := n], ϕ[x := n0])
(7)

< e, (σ, ϕ) >⇓ n ϕ(x) = n0

< x := e, (σ, ϕ) >⇓ (σ[x := n], ϕ)
(8)

In these rules, we extend the program state from σ to a tuple (σ, ϕ). In rule 7, we define that if
the expression e evaluates to n in state (σ, ϕ), and the old value of x is n0, and the old value of x has
not been recorded in ϕ, then the new state after the assignment is the same as (σ, ϕ), except that σ(x)
becomes n, and ϕ(x) becomes n0. According to rule 8, if the old value of x has been stored in ϕ, only
σ changes after the assignment. Note that in such contemporary languages as Java, evaluation of an
expression is not side-effect free. However, we can safely ignore this aspect here.

The rule for the safe block is then redefined with the checkpoint state added (ϕ0 here means a fresh
empty checkpoint object):

< {c1; c2; . . . ; cn}, (σ, ϕ0) >⇓ (σ′, ϕ′) except(σ′) = false

< safe {c1; c2; . . . ; cn}, (σ, ϕ) >⇓ (σ′, ϕ + (ϕ′ − ϕ))
(9)

2E.g., the analyzer usually cannot tell which elements in an array are modified, so a full backup of the whole array is
required to make this checkpointing sound.
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Before transformation:

private int i;

...

i = 1;

...

After transformation:

private int i;

protected Checkpoint $CHECKPOINT = new Checkpoint(this);

private FieldRecord $RECORD$i = new FieldRecord(0);

...

$ASSIGN$i(1);

...

private final int $ASSIGN$i(int newValue) {

if ($CHECKPOINT != null && $CHECKPOINT.getTimestamp() > 0)

$RECORD$i.add(null, i, $CHECKPOINT.getTimestamp());

return i = newValue;

}

Figure 4: Program transformation for a simple assignment

< {c1; c2; . . . ; cn}, (σ, ϕ0) >⇓ (σ′, ϕ′) except(σ′) = true

< safe {c1; c2; . . . ; cn}, (σ, ϕ) >⇓ (σ, ϕ)
(10)

Rule 9 uses expression ϕ + (ϕ′ − ϕ) to compute the new checkpoint state after the block is exited
successfully. ϕ′ is the checkpoint state that the block returns. ϕ′ − ϕ is the part of checkpoint state
that is not included in ϕ. This part of checkpoint state records the new updates to variables within the
block.

Rule 9 and rule 10 look similar to rule 4 and rule 5. However, the extended rules make clear how
safe blocks can be implemented.3 In rule 10, with the ϕ′ that the block returns, it is possible to roll
back the new program state σ′ to σ. The old values recorded in ϕ′ are restored to the variables, so that
no difference in program state can be seen in the future.

4 Program Analysis and Transformation

To implement safe block as an extension to the Java language, source-to-source program transformation
is taken as an approach. Programs using safe blocks are analyzed and transformed into native Java
code. The transformed code will then be compiled with the Java compiler and be executed in the Java
Virtual Machine.

4.1 Analysis of program variables

Before transformation can be carried out, the program must be analyzed so that the variables in the
program state are discovered and typed. Because we only consider private non-static variables here,
we can focus on one Java source file at a time. In Java, private variables can only be accessed by
the class that defines them, the classes enclosed in that class, and the classes enclosing that class. The
analyzer first resolves types for all the object references, and then decides whether an assignment in the
file is a modification on one of the private variables. This step is very similar to the type check and
the access control [1] processes in the Java compiler.

4.2 Transformation of assignments

An assignment to a private variable is transformed into an equivalent method call. The method, before
actually assigning the variable, backs up its old value in the current checkpointing object (if it has not
been backed up yet). This corresponds to rule 7 and rule 8.

3Rules 9 and 10 are also applicable to an implementation with snapshots.
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Before transformation:

private int[] a;

...

a = new int[10];

a[i] = 1;

...

After transformation:

private int[] a;

protected Checkpoint $CHECKPOINT = new Checkpoint(this);

private FieldRecord $RECORD$a = new FieldRecord(1);

...

$ASSIGN$a(new int[10]);

$ASSIGN$a(i, 1);

...

private final int[] $ASSIGN$a(int[] newValue) {

if ($CHECKPOINT != null && $CHECKPOINT.getTimestamp() > 0)

$RECORD$a.add(null, a, $CHECKPOINT.getTimestamp());

return a = newValue;

}

private final int $ASSIGN$a(int index0, int[] newValue) {

if ($CHECKPOINT != null && $CHECKPOINT.getTimestamp() > 0)

$RECORD$a.add(new int[]{index0}, a[index0], $CHECKPOINT.getTimestamp());

return a[index0] = newValue;

}

Figure 5: Program transformation for array assignments

Figure 4 shows the transformation for an assignment to integer variable i. Among the new fields and
methods added to the code, new fields $CHECKPOINT and $RECORD$i, and new method $ASSIGN$i are
the most important ones.4 The assignment is replaced by method call $ASSIGN$i(1). If no checkpoint
has been created (in which case $CHECKPOINT.getTimestamp() returns 0 or negative), the method
$ASSIGN$i behaves exactly the same as an assignment; otherwise, it backs up the old value before the
assignment. (If a backup already exits for the current timestamp, $RECORD$i.add returns immediately.)

$RECORD$i is the record for variable i. It is formed as a stack, so the creation of a new checkpoint
results in a new level in the stack. Different levels are ordered by the timestamps about when they are
created. An old value in the stack can be uniquely located with the timestamp.

Finally, a checkpoint object called $CHECKPOINT is defined for each object in the program. Different
checkpoint objects share the same timestamp system, so that their timestamps are comparable. This is
necessary because the rollback of one object usually requires the rollback of other objects that it refers
to.

The transformation for array assignment, shown in Figure 5, is similar. In this case, parameter
1 is given to the constructor of the record, meaning that the variable to be taken care of is a one-
dimensional array. Because a is assigned in two ways, two corresponding methods are created. Method
$ASSIGN$a(int[]) backs up the array variable when a new array is assigned to it. Unlike the snapshot
mechanism, this backup only requires a copy of the array reference but not the whole array. Method
$ASSIGN$a(int, int) regards its first argument as the index of the element to be modified, and
it creates a backup for that element only. Together with the element’s old value, the index is also
recorded, so that later we can restore the old value to that index.

Figure 6 shows a more complicated example of this transformation. In this example, an object is
declared private, so it is regarded as part of the program state. The assignment to modify this object
is transformed into an invocation of $ASSIGN$o. Unlike other assignment methods, this method also
ensures that the checkpoint object used by o is the same as the one used by the current object. The
checkpoint object then monitors two Java objects concurrently. A rollback with that checkpoint object
will be effective on both the two Java objects. This example also contains a statement i++. It modifies
i in a special way. In the transformed code, this becomes a call to $ASSIGN$SPECIAL$i, which handles
all such special expressions with side-effect.

We transform all the assignments in this way. Because we do not consider side effects other than
4As a convention, the new identifiers introduced by the transformer always start with a dollar sign to avoid conflict.
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Before transformation:

private MyObject o;

...

o = new MyObject();

o.changeState();

...

class MyObject {

private int i;

...

public void changeState() {

i++;

}

}

After transformation:

private MyObject o;

protected Checkpoint $CHECKPOINT = new Checkpoint(this);

private FieldRecord $RECORD$o = new FieldRecord(0);

...

$ASSIGN$o(new MyObject());

o.changeState();

...

private final MyObject $ASSIGN$o(MyObject newValue) {

if ($CHECKPOINT != null && $CHECKPOINT.getTimestamp() > 0)

$RECORD$o.add(null, o, $CHECKPOINT.getTimestamp());

if (newValue != null && $CHECKPOINT != newValue.$GET$CHECKPOINT())

newValue.$SET$CHECKPOINT($CHECKPOINT);

return o = newValue;

}

...

class MyObject {

private int i;

protected Checkpoint $CHECKPOINT = new Checkpoint(this);

private FieldRecord $RECORD$i = new FieldRecord(0);

...

public void changeState() {

$ASSIGN$SPECIAL$i(11, 0); // Argument 0 is not used.

}

...

private final int $ASSIGN$SPECIAL$i(int operator, long newValue) {

if ($CHECKPOINT != null && $CHECKPOINT.getTimestamp() > 0)

$RECORD$i.add(null, i, $CHECKPOINT.getTimestamp());

switch (operator) {

case 0: return i += newValue;

case 1: return i -= newValue;

...

case 11: return i++;

...

}

}

public final Checkpoint $GET$CHECKPOINT() {

return $CHECKPOINT;

}

public final Object $SET$CHECKPOINT(Checkpoint checkpoint) {

... // Set the checkpoint object; push a new level to all the records.

return this;

}

...

}

Figure 6: Program transformation for object assignment
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Before transformation:

try {

safe {

... // (1)

}

} catch (...) {

... // (2)

} finally {

... // (3)

}

After transformation:

try {

long $CHECKPOINT_HANDLE = $CHECKPOINT.createCheckpoint();

boolean $SUCCESS = false;

try {

... // (1)

$SUCCESS = true;

} finally {

if ($SUCCESS)

$CHECKPOINT.commit($CHECKPOINT_HANDLE);

else

$CHECKPOINT.rollback($CHECKPOINT_HANDLE);

}

} catch (...) {

... // (2)

} finally {

... // (3)

}

Figure 7: Program transformation for a safe block

variable update (e.g., disk IO, data transfer to remote devices, screen display, etc.), the only way to
change program state is by assignments. Therefore, we successfully capture all the state change.

4.3 Transformation of safe blocks

With the assignments correctly transformed, all that needs to be done for a safe block is to create a
checkpoint at its starting point, and to roll back to the checkpoint if any uncaught exception occurs, or
to commit the state change otherwise.

Figure 7 shows an example of this transformation for a safe block.
As a syntactic sugar, the programmer may write a safe block directly in place of a try block, possibly

followed by catch clauses and a finally block as follows. If exception occurs, the state is restored before
any catch clause or the finally block is executed.

safe {

...

} catch (...) {

...

} finally {

...

}

4.4 Time and space efficiency

This incremental checkpointing mechanism is designed for high performance. It may even be used in
real-time systems. The creation of a checkpoint object at the entry of a safe block takes constant time.
The extra code to back up old value for each assignment also takes constant time. At the exit point
of a safe block, either commit or rollback is called. The commit operation is linear in the number of
variables that are actually modified in the block. For every such variable, a copy of its old value is
stored. The commit operation discards the references to those old values. The Java garbage collector

8



Figure 8: An Eclipse plugin that automates the transformation

will reclaim the memory later. The rollback operation is also linear in the number of modified variables.
It first restores the old values to the variables, and then discards the references.

Because assignments are transformed into method calls, constant overhead is added. For a program
that uses assignments heavily, this overhead cannot be ignored. To compensate for this, all such methods
are declared final. An optimizing compiler may inline them at the call sites to eliminate method calls.
It is not easy to do this inlining in the transformation process, mostly because Java allows assignments
to be sub-expressions in larger expressions. In addition, because method inlining increases code size, it
is not always desirable.

Both the snapshot approach and this incremental approach are linear as a whole. However, this
approach is still more efficient, because snapshot checkpointing is linear in the number of variables that
may be modified. The analyzer that snapshot checkpointing depends on always returns a conservative
superset of variables that are actually modified at run-time, and this superset is usually much larger.

The memory space that this mechanism requires is also linear in the number of modified variables.

5 The Transformation Tool

A tool has been implemented as an Eclipse plugin that automates this transformation process (Figure
8). The Java editor is extended with two views. In the “Raw” view, the programmer inputs his/her
program in the extended Java language. Safe blocks can be entered in a slightly different syntax. Instead
of using the “safe” keyword, a safe block is written as a try-catch-finally construct with the comment
“/* SAFE */” attached to it. This is purely an implementation issue. Because it is not possible to
modify the Eclipse JDT parser, the Java syntax has to be followed, so the “safe” keyword cannot be
added. When the program is entered, the programmer can preview the transformation result in the
read-only “Preview” view.

The plugin also provides a special syntax highlighting in addition to Eclipse’s Java source highlight-
ing. All the private non-static variables are colored orange to remind the programmer that they are
regarded as part of the program state. This checkpointing mechanism thus gives the programmer the
guarantee that all the orange-colored variables will be safe after an uncaught exception is raised in a
safe block.
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6 Related Work

It is important to maintain program invariance so that the program never runs into an inconsistent state.
Exceptions can result in inconsistent program state if the programmers fail to handle them correctly.
This effect on critical resources has been explored by the CCured team at EECS, UC Berkeley [2].
They identify program state as the set of resources that are allocated but not released yet. Hence,
the operations of resource allocation and deallocation are concerned with. The programmer needs to
provide a description on the types of resources and the related operations. A source analyzer takes
the program and this description as input, and analyzes all the execution paths, including the paths
with exceptions. If there exists any path in which certain resources are allocated but never released, a
compile-time warning is produced. This analysis is complete but unsound because false alarms cannot
be avoided. Effort has been spent to reduce the number of false alarms.

Compared to this work, the checkpoint mechanism implemented in this project defines program
state differently. The program state is the set of private non-static variables here. The only oper-
ation that can modify program state is assignment. Programmers need not provide a description in
this case. Source-to-source transformation is employed to capture state change. Instead of informing
the programmer potential invalidation of program state, the tool developed here automatically recovers
program state when uncaught exceptions occur. It is intended that programmers exploit this safe assur-
ance and ignore some execution paths with exceptions. This releases programmers from the technical
detail of restoring programming state every time, and hence simplifies their work.

Because it has many applications, checkpointing is also studied by other research groups. The
checkpointing research at Tennessee is developing run-time checkpointing at the Java byte-code level
[3]. This checkpointing approach is similar to snapshot. When requested, the complete state of the
program execution is recorded in an architecture-independent format. This record can be used to resume
the execution, possibly on a different architecture that supports the same Java run-time environment.
Because of the nature of snapshot checkpointing, it is not suitable to be used as an implementation
technique for safe block. Safe block as a language construct requires frequent checkpoint creation and
rollback without much performance penalty.

7 Future Work

This project and the work done by the CCured team have different focuses. The former one does not
consider resources as program state, so uncaught exception may still do harm to program execution.
The latter one does not consider variables, but only checks the allocation and deallocation of resources.
It will be nice if the two can be combined, and give programmers better assurance. E.g., when a safe
block is exited with an exception, not only the variables are restored, the resources allocated in the
block are also released with corresponding deallocation methods automatically.

Another extension to this work is to provide more checkpointing-related language features. With
these features, programmers can manually specify the variables in program state, or fine-tune the
checkpointing process.
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