
Incremental Checkpointing based on Java Source Code Refactoring
(Project Report for CS264 in Spring, 2005)

Thomas Huining Feng
Ptolemy Group, CHESS (Center for Hybrid and Embedded Software Systems)

EECS, UC Berkeley
http://www.eecs.berkeley.edu/˜tfeng/

Abstract

In this project, incremental checkpointing is developed
specifically for Java programs. This checkpointing scheme
has a flavor of source code refactoring, which performs
almost all the (rule-based) transformation automatically,
requiring few (or no in many cases) interaction with the
programmer.

Incremental checkpointing bases on a logging tech-
nique that records the change in states instead of complete
snapshots of states, as is typically done in a serialization
scheme. This enables it to be widely applicable to most
existing Java programs. Performance loss due to the extra
operations for this checkpointing is small enough to make
it practical. Real-time property of the checkpointing sys-
tem may be provable, which will be further explored in our
future work.

1 Problem Statement

Checkpointing is widely used in many applications as a
fault tolerance technique. [1] As an example of application,
many software applications provide the “undo” function,
which undoes the recent changes (up to some extent) on
the documents that the applications manage. Another ex-
ample is a robust system that supports fail-recovery. Such
a system might maintain a log on its activity. When it
crashes unexpectedly, it restarts and recovers its previous
state recorded before the crash happened.

1.1 Application Background

The checkpointing solution developed in this project is
motivated by the evolution of Ptolemy II [2]. Ptolemy II
is a tool for heterogeneous model design and execution.1

1Ptolemy II is developed by the Ptolemy group at UC Berkeley,
headed by Prof. Edward A. Lee. The project is accessable at http:
//ptolemy.eecs.berkeley.edu/.

Distributed model execution in Ptolemy II is being imple-
mented. The implementation of a Time Warp [3] style
distribution execution requires the checkpointing facility.
In such an execution, components belonging to the same
model are deployed on multiple machines connected by
a network. Each component maintains its local logical
time. It is very expensive and even impossible to always
make the logical times on those hosts synchronized with
the global logical time. As a result, it is normal that there
is (possibly big) difference between the the logical times on
those hosts. It is then possible for a more advanced hosts
to receive a message tagged with a time in its past from
another host. In that case, the receiver has to roll back to
its previous state, and “replays” all the received messages
since that time to reach its new state.

1.2 Requirements

Because of this application background, a very different
type of checkpointing is required. It is different from many
existing checkpointing strategies in the following ways:

• Memory is considered the stable storage in this sce-
nario, while in many other checkpointing strategies,
memory is considered unstable, so checkpointing
records must be stored in secondary storage. In this
project, hosts themselves are considered stable. They
roll back only when inconsistency in the logical times
is detected. The rollbacks are requested by the hosts
that detect the inconsistency, while in many other
strategies, the rollbacks are requested by an external
agent, when it sees a hosts crash or do not function
properly.

• Many existing checkpointing strategies are in favor of
serialization, such as most database systems. There
are also strategies that combines serialization and log-
ging, such as those discussed in [4]. However, in
this project, we emphasize incrementality. This is be-
cause, in this specific application, it is hard to tell what

1

http://www.eecs.berkeley.edu/~tfeng/
http://ptolemy.eecs.berkeley.edu/
http://ptolemy.eecs.berkeley.edu/

is a good time to create a serialization snapshot, as
each host continuously receives messages and keeps
being busy handling those messages. The handling
of those messages results in advance in local logical
time, which also happens all the time.

• Some existing Ptolemy II models are themselves real-
time. Real-time distributed execution of those mod-
els is under research. It is desirable to preserve the
real-time property of those existing models (to some
extent) even after checkpointing support is added.

These special requirements give challenges to the
checkpointing that we develope. However, the following
consideration leads to a satisfactory solution.

• Because memory storage is considered stable, it is
possible to checkpoint the state of object references.
This is never possible when we think about crash of
programs, which invalids all the memory storage that
it uses. Objects residing in memory do not post a
problem to our design, while they really do to the oth-
ers, which rely (completely or partly) on serialization.

• We do not use serialization at any time of this
checkpointing. This is for performance reason as
well as for checkpointing object references in mem-
ory. Performance is an important goal of distributed
model execution. We cannot afford the performance
loss caused by periodically creating snapshots of the
model, which usually consists of tens to thousands of
actors.

• Serialization is not suitable for real-time applications,
because it is impossible to precisely predict how much
work is added by creating a snapshot. Moreover, the
extra work to roll back is also unpredictable. David
and Willy discussed some checkpointing algorithms
featuring the combination of serialization and logging
in [4]. It is very often that no snapshot was created
exactly at the time to be rolled back. In those cases,
the system rolls back to the latest snapshot taken be-
fore that time, and replays the messages (recorded in a
log) received between the snapshot time and the roll-
back time. Before an execution, it is not clear how
much extra work is done for this purpose. If such an
algorithm is implemented in a real-time system, the
real-time property is totally lost.

In this project, we develop a checkpointing mechanism
completely based on logging.

2 Solution to the Problem based on Java
Source Refactoring

Ptolemy II models are built from actors. All the Ptolemy
II actors are either written in Java or built by combining
other actors. This enables a Java source refactoring ap-
proach. In this approach, we focus only on the common
nature of all the well-formed Java programs.

A run-time state of a piece of Java code, as we are in-
terested in, is the mapping of state variables of an object
to their current values. Each state variable is defined to be
a private non-static field. Its value changes over time. We
may define states and state variables formally as follows:

S(o,t) = Vo,t

Vo,t(offset) = value

(S(o,t), where o is an object and t is the execution time,
evaluates to a function Vo,t. Vo,t is a mapping from offsets
of the object to the values stored at those offsets. It is as-
sumed that each offset corresponds to a private non-static
field (state variable) of the object. We call S(o,t) a state of
the object at that time.)

2.1 Modification on States

With states defined, we can now study different Java
features that do modifications on states. In order to roll
back at a later time, enough information must be stored
to undo those modifications. As modification sites in Java
programs are exhaustively studied below, methods to cap-
ture them and the information needed to be stored are also
made clear.

With a refactoring tool, the modifications are detected
in the Java source code. The original source code is then
transformed to a new form, in which the recording is done
for each modification.

2.1.1 Assignment

The most obvious modification on a state variable at run-
time is assignments.

Table 1 shows several examples of transformations on
assignments. Most of the transformations discussed in this
report (including those shown in Table 1) are based on ex-
tra methods. In example 1, the assignment a = b; is trans-
formed to a call to an extra method $ASSIGN$a with argu-
ment b. The pseudo-code for this method as as follows:

private int $ASSIGN$a(int newValue) {
... // Store the old value of a.
return a = newValue;

}

2

1 a = b;
1’ $ASSIGN$a(b);
2 f(a = b);
2’ f($ASSIGN$a(b));
3 f(..).a = b;
3’ f(..).$ASSIGN$a(b);
4 f(a = b, g(c = d));
4’ f($ASSIGN$a(b), g($ASSIGN$c(d)));

Table 1: Refactoring Assignments

5 a += b;
5’ $ASSIGN$SPECIAL$a(1, b);
6 a -= b;
6’ $ASSIGN$SPECIAL$a(2, b);
7 a++;
7’ $ASSIGN$SPECIAL$a(10, 0);
8 ++a;
8’ $ASSIGN$SPECIAL$a(11, 0);

Table 2: Refactoring Other Expressions with Side-Effect

This method records the old value of a (assuming it is
a state variable and its type is int), assigns the new value
to it, and then return the new value. It exactly models the
behavior of an assignment.

As is pointed out, a tool is developed to automatically
refactor the Java program. When it detects an assignment
to a state variable in the Abstract Syntax Tree (AST) of the
Java source code, it converts it into a method call as shown.
It also records that the state variable has been assigned at
at least one place. Extra fields and extra methods will be
added to the class for all the assigned state variables, when
the transformer finishes traversing the whole class.

2.1.2 Other Expressions with Side-Effect

Except assignments with the = operator, many other kinds
of Java expressions have side-effect. Another extra method
is build for all those kinds of expressions, as shown in Ta-
ble 2.

Extra method $ASSIGN$SPECIAL$a handles all the
other expressions that have side-effect. Its first argument
is the type of the expression. E.g., 1 means +=, 2 means
-=, etc. Its second argument is the sub-expression on the
right-hand side. In case there is no sub-expression (such as
a++), the second argument is ignored.

The pseudo-code of this method is similar to the previ-
ous one:

private int $ASSIGN$SPECIAL$a(int operator,

int newValue) {
... // Store the old value of a.
switch (operator) {
case 1:

return a += newValue;
case 2:

return a -= newValue;
...
case 10:

return a++;
case 11:

return ++a;
...
}
return -1;

}

2.1.3 Arrays

Assignments to arrays (or their elements) are handled spe-
cially. This is because an array can be modified in different
ways. The following piece of code shows such an example:

int[][] buffer;
buffer = new int[2][];
buffer[1] = new int[2];
buffer[1][1] = 2;

In this example, buffer is modified in three different
ways (with three different numbers of indices). A different
extra method is used in each case.

int[][] buffer;
$ASSIGN$buffer(new int[2][]);
$ASSIGN$buffer(1, new int[2]);
$ASSIGN$buffer(1, 1, 2);

The extra method used for the first assignment is the
same as the one in previous sections. The second method,
which takes one more argument as the first index, assigns
the new value (new int[2]) to the element refered to
(buffer[1]). Similarly, the third method takes two more
arguments as the two indices.

2.1.4 Alias of Arrays

Aliasing is a big problem in C and C++, with which a state
variable can be aliased with another name (possibly ap-
pearing as a local variable). Modification can then be done
on the new name. It is not possible to statically capture the
change on those aliased state variables.

In Java, this problem is alleviated. We only consider
alias of arrays, because, though objects can be aliased,
modification on their states must still be done on private

3

9 a = b;
9’ a = $BACKUP$b();

Table 3: Refactoring Array Alias

non-static fields. (Even if o is a local variable of an object
type, o.a = b is still refactored to o.$ASSIGN$a(b) if a
is one of o’s state variables.)

When an array is aliased with a local variable, to sim-
plify the solution, its content is backed up in the memory.
There is on-going research on alias analysis, but the com-
plexity to precisely determine an alias is sometimes turing-
complete (the same as solving the halting problem). The
examples in Table 3 make it clear how this backup is done
with another extra method (assuming that a is a local vari-
able, and b is a state variable of type int[][]). In this
example, method call $BACKUP$b() backs up the content
of b, and then returns b. In this case b is multi-dimensional,
so all the elements in all the dimensions are backed up. The
following is the pseudo-code of this method:

private int[][] $BACKUP$b() {
for (int i1 = 0; i1 < b.length; i1++) {

... // Store the old value of b[i1].
for (int i2 = 0; i2 < b[i1].length;

i2++)
... // Store the old value of

// b[i1][i2].
}
return b;

}

2.2 Checkpoint Management

Each class, once it is refactored, supports checkpointing
and rollback operations on its instances.

The notion of checkpoint objects is required to iden-
tify the set of run-time objects to be rolled back at a time.
A checkpoint object is a special object that monitors a set
of objects in memory for checkpointing purpose. All the
objects monitored by the same checkpoint object must be
rolled back together. This simplifies the task of identifying
which objects to be rolled back.

2.2.1 Checkpoint Handle

An extra method GETCHECKPOINT is added to each refac-
tored class. It returns the checkpoint object that moni-
tors the current object. Obviously, calling this method on
different objects may yield the same checkpoint object, if
those objects are in the same set to be rolled back.

Programmers may directly call methods of a check-
point object to manage checkpoints. createCheckpoint
method is used to create a new checkpoint. It takes no ar-
gument and returns a checkpoint handle (in the current de-
sign, a long value). This handle may be used to roll back
the system later on.

Contrary to serialization, which takes a system snapshot
at the time a checkpoint is created, createCheckpoint ac-
turally does nothing but return the next available handle.
In this sense, this incremental checkpointing is much more
efficient than the traditional serialization scheme.

In our design, the checkpoint handle returned is actu-
ally the timestamp denoting the logical execution time on a
host. This guarantees that every handle returned is unique.
Programmers can thus use those timestamps to specify the
exact time to be rolled back. However, this design may be
changed in the future. In reality, any unique handle might
be returned. Programmers should not assume any meaning
in those handles.

2.2.2 Storing the Old Values

When we discussed the extra methods above, we ignored
the parts where old values of the state variables are stored.
Those parts are more easily understood when the notions
of checkpoint objects and handles are made clear.

To store an old value, the methods first checks
whether a checkpoint handle has been returned by the
createCheckpoint method of the checkpoint object that
monitors the current object. If not, nothing needs to be
done, since the program cannot roll back to a previous state
without a handle. Otherwise, the current value of the state
variable is pushed to a state record, which is of a stack
structure.

When an old value is pushed to the state record, the cur-
rent timestamp of the checkpoint object is associated with
it. This timestamp is used to judge whether to restore the
old value when the program tries to roll back to a previous
time.

2.2.3 Joining a Set

Checkpoint sets, each monitored by a checkpoint object, is
not static at run-time. In stead, objects frequently join and
leave those sets. This is an effect of object assignment.

Let us reconsider the simple assignment a = b where a
is a state variable of the current object (this object). a has
an object type, which is the same as b. As discussed above,
this assignment is refactored to $ASSIGN$a(b), which has
the same effect as the assignment itself. However, if both
this object and b are instances of classes that have been
refactored, they should be placed in the same checkpoint
set, if they are not already in the same set. This makes it

4

possible to roll back both objects at the same time later.
The following piece of code further shows why this is nec-
essary:

a = b;
// Create a checkpoint.
int handle =

GETCHECKPOINT$().createCheckpoint();
b.i = 1;
// Rollback.
GETCHECKPOINT$().rollback(handle);

After refactoring, the above piece of code becomes:

$ASSIGN$a(b);
// Create a checkpoint. Not refactored.
int handle =

GETCHECKPOINT$().createCheckpoint();
b.$ASSIGN$i(1);
// Rollback.
GETCHECKPOINT$().rollback(handle);

If this object and b were not places in the same set af-
ter the first assignment, rolling back with the handle would
be useless, because the handle was returned by the check-
point object monitoring this object, not b. It is possible
to roll back the effect on an object monitored by another
checkpoint object.

With this consideration, an extra method
SETCHECKPOINT is added to set the checkpoint ob-
ject of an object. This method is called in the $ASSIGN$a
method if b’s class has been refactored.

An object may also join a set at a field declaration. The
following is such an example:

class A {
...
private B f = new B();
...

}

In this example, a new instance of B is created and im-
mediately assigned to the f field of an A object. According
to our design, both objects must be in the same checkpoint
set, so that later when we roll back the A object, the con-
tent of its f field is also rolled back. Hence, the transformer
gives the following refactoring result:

class A {
...
private B f =

new B().SETCHECKPOINT($CHECKPOINT);
...
// Here is the checkpoint object that

// monitors the current object.
CheckpointObject $CHECKPOINT = ...;

}

To make this refactoring legal, extra method
SETCHECKPOINT is deliberately designed to return
this.

2.3 Cross Analysis

In many cases we need to cross-analyze multiple
classes. Suppose we are currently analyzing class A, which
refers to class B. Whether class B is refactored affects the
refactoring result of A.

Even though we only refactor private fields of one class
at a time, it is still possible for another class that is not
being analyzed to directly write to those fields. For exam-
ple, enclosed classes can always access the private fields of
their enclosing classes. To deal with this, modification in
those enclosed classes must also be refactored in a similar
way.

The SETCHECKPOINT method is also affected by
cross-analysis of other classes. When this method is called,
the checkpoint object of the current object is changed. To
maintain the consistency of checkpoint sets, all the other
objects that it refers to must also change their checkpoint
object. The pseudo-code of this method in class A is shown
below:

class A {
private B b;
...
CheckpointObject $CHECKPOINT = ...
public A SETCHECKPOINT(Checkpoint cp) {

if ($CHECKPOINT != cp) {
$CHECKPOINT = cp;
b.SETCHECKPOINT(cp); // (*)

}
return this;

}
}

Statement (*) is there only if class B is also refactored.
We do not require programmers to refactor every class. In
fact, it is not possible to refactor all the classes used, be-
cause many classes are in binary form in the Java built-in
library or some other third-party libraries.

2.4 Class Substitution

Some Java programs store states in special built-in Java
objects, such as hash tables and linked lists. To roll back,
it is also necessary to roll back those built-in objects. This

5

posts a question to our design. The Java built-in library
is not modifiable. Even if it is, it is not a good idea to
modify the library and distribute it to every end-user of the
refactored code.

Our solution is given by refactoring a re-implementation
of part of the built-in library. This re-implementation,
though it could be written manually following the Java
API, is retrieved from GCJ2, a GNU compiler for Java.
The source code of some built-in classes are downloaded
from GCJ, and the same refactoring is applied to the source
code to get new classes that supports checkpointing. The
refactored classes are placed in a new package. After that,
when the tool refactors a class using one of those built-in
classes, a simple renaming is done so that the class uses the
refactored GCJ classes.

For example, such classes as java.util.Hashtable
and java.util.LinkedList are retrieved from the
GCJ CVS repository. The refactored classes are
ptolemy.backtrack.java.util.Hashtable and
ptolemy.backtrack.java.util.LinkedList. When
java.util.Hashtable is seen in a user class to be refac-
tored, ptolemy.backtrack.java.util.Hashtable is
used instead, which supports checkpointing.

3 Evaluation

The refactoring tool has been implemented in Java. It
makes use of Eclipse3 JDT’s AST builder. This refactor-
ing mechanism has been successfully applied to over 50
Ptolemy II actors and over 20 GCJ classes in its java.util
package. This shows that this refactoring mechanism is
widely applicable to most Ptolemy actors as well as many
general-purpose Java programs.

Performance evaluation of this tool is carried out in var-
ious aspects.

3.1 Performance of Refactoring

The refactoring tool is designed in such a way that the
program AST is traversed only once. In this one traversal,
it type-checks the Java program, and also refactors the pro-
gram by calling different handlers. (Those handlers are de-
fined by refactoring rules.) The time for this tool to refactor
a program is about the same as the time for Javac (the Java
compiler) to compile it.

2GCJ homepage: http://gcc.gnu.org/java/
3Eclipse homepage: http://eclipse.org/

3.2 Run-Time Performance of the Refactored
Code

Obviously, the run-time performance of the refactored
code heavily depends on how many state variables there are
in the program, and how often they are modified. The more
often state variables are modified, the more extra work has
to be done in order to back up their old value, and also the
more memory space is used to store the change history.

We are not considering aliasing in this performance
evaluation. Frequently aliasing an array may cause ex-
tremely expensive array cloning. The programmers should
be aware of this and avoid aliasing as much as possible.

Assignments in the original program become method
calls after refactoring. In the body of those methods, extra
work is done to store the old values. This accounts for a
constant amount of extra work for each modification to a
state variable. In a worst-case program that modifies state
variables in each statement, a linear degradation in perfor-
mance is seen.

However, the programmers are assumed to be aware of
this refactoring, though they typically need not create their
program in a special way. With this awareness, the pro-
grammers should not modify the state variables heavily.
Specifically, they should not use state variables as loop
variables, which are modified in each iteration of a loop.
Frequent modifications should be done on local variables
instead. Only when the values of the local variables are
relatively stable, e.g., at the end of method bodies, are they
finally assigned to state variables. If this is the case, the
performance loss due to checkpointing is neglectable.

3.3 Real-Time Property

As pointed out above, real-time property in some
Ptolemy models is important. With this checkpointing
strategy, the refactored models, which support rollback,
may preserve their real-time property. This is because of
the linear performance degradation, which can be precisely
predicted before an execution. This aspect is being studied
in our group.

References

[1] Yi-Min Wang, Yennun Huang, Kiem-Phong Vo, Pi-Yu
Chung, and Chandra M. R. Kintala. Checkpointing
and its applications. In Symposium on Fault-Tolerant
Computing, pages 22–31, 1995.

[2] Edward A. Lee. Overview of the ptolemy project.
Technical report, Technical Memorandum UCB/ERL
M03/25, July 2003.

6

http://gcc.gnu.org/java/
http://eclipse.org/

[3] David R. Jefferson. Virtual time. ACM Transaction on
Programming Languages and Systems, 7(3):404–425,
1985.

[4] David B. Johnson and Willy Zwaenepoel. Recovery in
distributed systems using optimistic message logging
and checkpointing. In Proc. 7th Annual ACM Symp. on
Principles of Distributed Computing, pages 171–181,
Toronto (Canada), 1988.

7

	Problem Statement
	Application Background
	Requirements

	Solution to the Problem based on Java Source Refactoring
	Modification on States
	Assignment
	Other Expressions with Side-Effect
	Arrays
	Alias of Arrays

	Checkpoint Management
	Checkpoint Handle
	Storing the Old Values
	Joining a Set

	Cross Analysis
	Class Substitution

	Evaluation
	Performance of Refactoring
	Run-Time Performance of the Refactored Code
	Real-Time Property

