
Buffer-Sizing for Precedence Graphs on Restricted

Multiprocessor Architectures

Thomas Huining Feng and Yang Yang
Mentors: Qi Zhu and Abhijit Davare

December 7, 2005

1 Overview

This work solves a sub-problem required to enable software synthesis for Parallel Heterogeneous Plat-
forms (PHPs). This sub-problem is concerned with determining the buffer sizes between processing
elements.

In the design flow, task allocation and scheduling are carried out before buffer sizing. Given a PHP
with a number of processors and a set of tasks, a heuristic is used to allocate tasks onto processors and
to schedule them. The input of this algorithm is a precedence DAG, whose vertices represent the tasks
and whose edges represent data dependencies.

The scheduling algorithm [1] assumes unlimited FIFO sizes between processors, but this is not true
in reality. Architectural platforms have finite-depth FIFOs between processors. If the FIFO depth is
too small, execution may deadlock. We call this kind of deadlock artificial deadlock [2], as compared to
real deadlock which can occur even if the FIFO depth were unlimited.

Prior work in this field mainly focuses on the buffer sizing problem in uni-processor platforms [3].
The previous work that deals with multiprocessor buffer minimization [4] does not consider interleaving
communication, where two active tasks on different processors can communicate large amounts of data
using one-place buffers. In this work, we develop algorithms to address this problem. Theoretical as
well as practical results are provided.

2 Problem Statement

Before our algorithms are presented, we first formalize the problem. An instance of this problem is
a 5-tuple 〈V, P,M,E, W 〉. V = {v1, v2, . . . , vm} is the set of vertices in the precedence DAG. P =
{p1, p2, . . . , pl} is the set of processors. M : V → P is the mapping from vertices to the processors that
they are scheduled on. E = {e1, e2, . . . , en} is the set of edges. We distinguish two disjoint subsets of E:
S = {e|e ∈ E ∧M(src(e)) = M(des(e))} is the set of schedule edges, and D = {e|e ∈ E ∧M(src(e)) 6=
M(des(e))} is the set of data edges. W : D → <+ is the weight function. M and E are acquired from
the scheduling algorithm.

We try to compute valid FIFO sizes according to some minimum criteria without giving rise to
artificial deadlock. If we use function F : P ×P → <+ to denote the FIFO sizes, the two problems that
we are going to solve are:

• Min max: with 〈V, P,M,E, W 〉 given, find a valid F such that max{F (pi, pj)|∀i, j} is minimized.

• Min total: with 〈V, P, M, E, W 〉 given, find a valid F such that
∑
{F (pi, pj)|∀i, j} is minimized.

3 Solving the Min Max Problem

Because any valid FIFO assignment should not produce artificial deadlock, we need to study how
artificial deadlocks occur. A deadlock occurs when there is cyclic dependency. An artificial deadlock is
a special kind of deadlock where the cyclic dependency exists only because of FIFO depth. With the
observation that a data edge implies bidirectional dependency if there is not enough FIFO space for it,
we transform the precedence DAG into a dependency graph by making all the data edges bidirectional.
We then prove the following theorem about artificial deadlock.

1

Theorem 1: Artificial deadlock exists if and only if there is a cycle in the dependency graph
(dependency cycle).

We further observe that a dependency cycle must contain at least one data edge, because the
precedence graph is acyclic. In addition, schedule edges do not affect FIFOs. Combining all these
results, our algorithm to solve the min max problem only needs to deal with data edges in dependency
cycles.

Our algorithm iterates over all the edges in the dependency graph. One edge is resolved and removed
each time (hence, E changes over time). In iteration i, if we let V free

i = {v|v ∈ V ∧∃e ∈ Ei.des(e) = v}
and Efree

i = {e|e ∈ Ei ∧ src(e) ∈ V free
i }, then our algorithm only needs to consider edges in Efree

i .
Among all the edges in Efree

i that are also in dependency cycles, the algorithm always chooses the one
ei such that the FIFO size required to complete the communication on ei, Fi(M(src(ei)),M(des(ei))),
is minimal. It builds Fi by making it the same as Fi−1 (initially, F0 always returns 0), except that
Fi(M(src(ei)),M(des(ei))) becomes this new FIFO size.

We call the above algorithm Am, and give the following theorem with detailed proof:

Theorem 2: Assume that Am terminates after iteration k. Let F be Fk computed by Am.
F is a valid FIFO assignment, and max{F (pi, pj)|∀i, j} is minimized.

To detect whether a data edge is in any dependency cycle, we develop an O(|E|)-time algorithm Ac

that returns a boolean. With this, we show the complexity of Am to be O(|E|2).

4 Solving the Min Total Problem

For the min total problem, it can be proved that in any intermediate step i, it cannot be determined
which edge in Efree

i should be resolved so as to guarantee the total FIFO size to be minimized at the
end. This problem turns out to be an NP-hard problem due to the following theorem:

Theorem 3: Any instance of the Feedback Arc Set (FAS) Problem [5], which is NP-hard,
can be reduced to a min total problem in polynomial time.

Because of this, we are content with another algorithm, At, that solves the min total problem in
exponential time.

5 Implementation and Experimental Result

The algorithms are implemented in C++ with the Boost Graph Library (BGL). We have manually built
a set of simple precedence DAGs, which covers most of the corner cases. We have also generated bigger
random precedence DAGs with Task Graph For Free (TGFF) [6]. For those graphs, the above-described
algorithms return the correct results to the min max problem and the min total problem, respectively.
The big difference in time complexity is reflected with both small and large test cases. Furthermore,
from the experiments, we obvserve that the results given by Am are good heuristics for those given by
At.

References

[1] Gilbert C. Sih and Edward A. Lee. Compile-time scheduling heuristic for interconnection-constrained het-
erogeneous processor architectures. j-IEEE-TRANS-PAR-DIST-SYS, 4(2):175–187, February 1993.

[2] M. Geilen and T. Basten. Requirements on the Execution of Kahn Process Networks. In P. Degano, editor,
Proc. of the 12th European Symposium on Programming, 2003.

[3] S. S. Bhattacharyya, R. Leupers, and P. Marwedel. Software synthesis and code generation for signal
processing systems. Technical Report CS-TR-4063, 1999.

[4] Marleen Adé, Rudy Lauwereins, and J. A. Peperstraete. Data memory minimisation for synchronous data
flow graphs emulated on DSP-FPGA targets. In DAC, pages 64–69, 1997.

[5] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, 1979.

[6] Robert P. Dick, David L. Rhodes, and Wayne Wolf. TGFF: task graphs for free. In CODES, pages 97–101,
1998.

2

