
Dynamic Program Analysis with Partial Execution and Summary

Thomas Huining Feng
CHESS, UC Berkeley

tfeng@eecs.berkeley.edu

Abstract
Automatic program testing by means of path exploration has
been a successful technique for discovering potential bugs.
However, the cost incurred by a complete test is usually high,
due to the exponential number of paths in the program. Con-
clusion about a program’s failure constraint, made on an in-
complete test, yields either false negatives or false positives,
or both. Methods exist that trade preciseness for efficiency,
resulting in a spectrum of conservatism. Orthogonal to these,
effort has been spent on avoiding the exploration of “unnec-
essary” paths, such as multiple paths that fall in the same
equivalent class of program behavior.

In this paper, an innovative program testing method is
developed, which aims to reduce the number of explored
paths without introducing extra conservatism in the failure
constraints. The program under test is first partitioned into
segments. The last segment (in terms of program execution)
is first tested. A failure constraint is generated for this test.
This constraint as a summary is then used to test the next
segment above, giving rise to a new constraint for a bigger
part of the program. This process repeats until the program
starting point is reached. We show in experiment that this
approach may greatly reduce the number of paths required
to explore in order to obtain a failure constraint. It also helps
to extract failure constraint for a program with an unbounded
number of paths, e.g., one that has an unbounded loop.

1. Introduction
Traditional program testing methods require to analyze pro-
gram statements in their sequential order. Each execution
path is explored from the start of the program to either the
end or a failing statement. The latter indicates a bug. To
draw a conclusion on the failure constraint, one records the
path constraints (the constraints that characterize the paths
traversed) during the test, and then takes the disjunction of
those constraints for paths with failure output.

This general approach does not scale for large programs,
due to the exponential number of paths that exist in them.
All paths are explored even though usually only few of them
actually lead to failure. Different conservatism strategies
have been studied to improve efficiency, resulting in either
false positives (detecting failing paths that cannot actually

be taken) or false negatives (missing failing paths that could
be taken) in the result. For example, Daikon [5] [2], a tool
that helps to dynamically discover program invariants, has
the limitation that it can only handle some kinds of invari-
ants that are simple and pre-defined with parameters (e.g.,
the linear relation between variables). Other kinds of invari-
ants cannot be detected. If Daikon were used to generate fail-
ure constraints, the result would then be affected by false
negatives.

Predicate-based testing approaches have also been devel-
oped, an example of which is Korat [3]. However, Korat re-
lies on the provided pre/post-conditions for methods, which
cannot be automatically generated. Analysis of the whole
program is then based on those post-conditions as test or-
acles. Errors made by the programmers who provide the
pre/post-conditions also affect the validness of the final judg-
ment.

In this paper, we will introduce a new approach based on
partial execution of program segments. It greatly improves
the analysis of two kinds of programs, which are identified
later. This improvement exhibits itself in a few experimental
programs as well as theoretical results.

This work is an extension to JCute [7], a concolic pro-
gram testing tool for dynamic path exploration. Our testing
method takes the source of a Java program as input, and gen-
erates a failure constraint that indicates the situation under
which the program fails. Java annotations are used to specify
failure. Starting from the initial failure annotations (which is
usually “true”) provided by the programmer, the tester tries
to derive constraints for larger and larger parts of the pro-
gram by repeating a partial execution process, each time ex-
ploring all the execution paths that lead to failure.

For simplicity of the discussion, we make an assumption
that the programs under test are deterministic and free of
side effect. This, however, is not a limitation. Determinism
is a common assumption. If it is not satisfied, e.g. because a
random number is produced that influences the program ex-
ecution, a transformation can be applied before the testing,
which substitutes the random number generator with a pre-
dictable number generator. Concurrency between threads is
another source of nondeterminism. To deal with it, a special
scheduler can be used that provides predictable threading
schedules. Ruled out by the second part of our assumption,

mailto:tfeng@eecs.berkeley.edu

public class A {
void f(boolean op1, boolean op2,

boolean op3, boolean failure) {
if (op1) {

System.out.println("Operation 1");
}
if (op2) {

System.out.println("Operation 2");
}
if (op3) {

System.out.println("Operation 3");
}
@Failure("failure") int fail;

}
}

Table 1. A program with independent conditional branches

side effect may make part of a program malfunction. For ex-
ample, for a program that first opens a file and then reads
the content, if the read functionality is executed separately,
it may always fail, causing the tester to determine “true” as
the failure constraint. Note that when side effect like this
happens, the failure constraint in the conclusion is always
weaker than the actual failure constraint. In some cases, a
weaker constraint is acceptable as a conservative guess. If
it is unacceptable, however, one may temporarily continue
with the test based on this constraint. Later on obtaining
a failure constraint for a bigger part (in this example, the
bigger part contains both the open and the read operations),
he/she then repeats the first test to make the new constraint
no weaker than the actual one. Ways to implement this re-
testing with acceptable performance are out of the scope of
this paper.

2. Motivating Examples
In this section, two example programs are examined to mo-
tivate the work. The first example contains a sequence of
mutually independent conditional branches. If it is tested in
JCute without partition to obtain the failure constraint, the
number of paths to explore is exponential in the number of
branches. However, if it is partitioned into segments before
the analysis, the growth of complexity can be made linear.

The second example is a program with a loop that has an
unbounded number of paths. If it is partitioned before test, a
constraint can be obtained in bounded time (in fact, 10 runs).

2.1 Example 1
Table 1 shows a simple program with 3 independent branch
statements in a series.

The “@Failure” annotation has a string parameter that
specifies the failure condition. In this case, the program fails
if and only if variable failure is assigned true. In the test,
this annotation (with the dummy variable fail following it,

Constraint
1 op1 && op2 && op3 && failure
2 op1 && op2 && !op3 && failure
3 op1 && !op2 && op3 && failure
4 op1 && !op2 && !op3 && failure
5 !op1 && op2 && op3 && failure
6 !op1 && op2 && !op3 && failure
7 !op1 && !op2 && op3 && failure
8 !op1 && !op2 && !op3 && failure

failure

Table 2. Path constraints for example 1

whose name does not matter) has an effect as the following
statement: 1

if (failure) {
System.out.println("!!! FAILURE !!!");
return;

} else {
return;

}

To test function f, parameters op1, op2, op3 and failure
are arbitrarily generated by JCute, each taking value of ei-
ther true or false. A main function is also generated, which,
after producing the parameters, calls f on a fresh Java object
in class A. (No object is created if the method under test is
static.)

The program contains 4 conditional branches (including
the one corresponding to the failure annotation), each per-
forms the test on a different parameter. JCute produces 16
paths during the test, half of which have “!!! FAILURE !!!”
outputs. Table 2 shows the failure constraints for them. The
disjunction of these constraints, “failure”, is the necessary
and sufficient condition for the whole program to fail.

An observation from this result is that one need not ex-
plore all the 16 paths to obtain the program’s failure con-
straint in this particular case, because it only depends on the
failure parameter.

The approach to be presented in the next section helps to
reduce the complexity of generating failure constraints for
programs of this kind.

2.2 Example 2
A quite different problem occurs when the program under
test has an unbounded loop. An example is can be found in
Table 3.

To test this program, JCute generates assignments for
parameters i and j. Because the loop variable k iterates from
0 to i, and i’s value is not constrained by the environment,
the number of iterations is unbounded. For this test, JCute

1 A program transformer actually replaces the annotation with the if-
statement before performing a test.

public class B {
void f(int i, int j) {

for (int k = 0; k < i; k++) {
if (i == j) {

@Failure("true") int fail;
}

}
}

}

Table 3. A program with an unbounded loop

keeps generating new paths until the pre-defined maximum
number (10000 in the current implementation) is reached.

It is obviously time wasting to generate all these paths.
Specifically, the loop does not modify i or j, so the con-
straint evaluates to the same true or false value regardless
of the iteration. A natural question to ask is whether we can
determine the constraint even for this kind of programs. The
approach to be presented in the next section provides a “yes”
answer by computing a fixpoint.

3. Program Segmentation and Partial
Execution

In this section, we will present an innovative approach to
determining failure constraint.

Given a program with branches, we first partition it into
a number of segments. The number and the sizes of the
segments can be controlled by the human tester. In the ex-
periments presented here, we partition the programs at the
branches in hope of better efficiency. For instance, the pro-
gram in example 1 can be partitioned as in Table 4.

Out of the 4 segments, the last one is special because it
contains the provided failure constraint instead of executable
code. Our partial execution starts by testing segment 3 to-
gether with the constraint in segment 4. A new constraint is
generated as the disjunction of the path constraints for all
the failing paths collected. In this case, after simplification,
the constraint remains to be “failure”, because op3 does not
have an impact on it.

The program can then be rewritten and repartitioned as
in Table 5. (Note that the failure annotation is hoisted one
branch up.)

JCute is then used to again execute the program, produc-
ing a new constraint for segments 2 and 3. This rewrite-and-
test process repeats until a constraint for the whole program
is obtained.

3.1 Efficiency Assessment
The complexity of the above testing process is easy to calcu-
late. In each test there is an if-statement followed by an an-
notated failure constraint, which is always “failure”. There-
fore, each test returns 4 paths, 2 of which have failure. 3
tests need to be performed in a series before the head of the

public class A {
void f(boolean op1, boolean op2,

boolean op3, boolean failure) {
/* Start of Segment 1 */
if (op1) {

System.out.println("Operation 1");
}
/* End of Segment 1 */

/* Start of Segment 2 */
if (op2) {

System.out.println("Operation 2");
}
/* End of Segment 2 */

/* Start of Segment 3 */
if (op3) {

System.out.println("Operation 3");
}
/* End of Segment 3 */

/* Start of Segment 4 */
@Failure("failure") int fail;
/* End of Segment 4 */

}
}

Table 4. A partition of example 1

program is reached, so the total number of paths explored is
4 + 4 + 4 = 12. Compared to the approach without parti-
tioning (which requires to explore 24 = 16 paths) the num-
ber of paths is 4 less. (In fact, many of those 12 paths are
only sub-paths of a complete path, containing much fewer
statements.)

The difference between the partitioning approach and
the non-partitioning approach can be very big in practice.
Take the example in Figure 1. The complete program has
8 ∗ 8 ∗ 2 = 128 paths, all of which need to be explored if
no partitioning is performed. However, if we partition it into
two segments of the same size, then the total number of paths
to explore reduces to 8∗2+8∗2 = 32. (Here we assume that
the intermediate constraints can be ideally simplified into a
single literal, such as “failure” seen above. This is the best
case scenario. Discussion on the best case and the worst case
is postponed to the end of this paper.)

3.2 Loop Unrolling
Loops can be problematic. Undecidability of the number
of iterations is part of the problem. Because of this, it is
generally impossible to summarize the exact loop failure
constraints in finite time.

The example program in Table 3, however, is a special
case in which, even though the number of iterations is unde-

public class A {
void f(boolean op1, boolean op2,

boolean op3, boolean failure) {
/* Start of Segment 1 */
if (op1) {

System.out.println("Operation 1");
}
/* End of Segment 1 */

/* Start of Segment 2 */
if (op2) {

System.out.println("Operation 2");
}
/* End of Segment 2 */

/* Start of Segment 3 */
@Failure("failure") int fail;
if (op3) {

System.out.println("Operation 3");
}
/* End of Segment 3 */

}
}

Table 5. Rewriting example 1 and repartitioning it with one
less segment

Figure 1. An imaginary program structure and a partition
of it into two segments. Diamonds in the graphs represent
branches; boxes represent statements; and spined balloons
represent unconditional failure. The left graph shows the
structure of the complete program. The right graphs are the
two segments.

cidable, we can still determine the exact failure constraint.
In this code, the number of paths depends on parameter i,
which is unconstrained. In our approach, the testing tool tries
to compute a fixpoint of a sequence of shrinking failure con-
straints. The algorithm stops once a fixpoint is reached. (Re-
fer to [4] for the fixpoint theory.)

To help understand the algorithm, we first consider a loop
to be unrolled to a decision tree with arbitrary but finite
height. Figure 2 shows the unrolling of the loop in example

k<i

i==j

k<i

N Y

N Y

i==j

k<i

i==j

…

k<i

…

Figure 2. Unrolling of the example in Table 3, resulting in
a tree of unbounded height

2. Though its height is unbounded (denoted with . . .) in
general, in practice each execution always corresponds to a
tree with fixed height.

The above observation is essential. A naive version of
our approach is as follows: Program testing starts from the
end of the tree, corresponding to the last iteration (together
with all other statements behind the loop, which do not exist
in this example). This portion is shown as the first subtree
tree in Figure 3. After testing this portion (compare to a
segment of example 1), a failure constraint is obtained with
the path constraints produced by JCute. This corresponds
to one single iteration of the loop. In this case, 3 paths are
explored, and the failure constraint returned is “k <= i-1 &&
i == j”.

This constraint is then plugged into the second last itera-
tion (subtree 2© in Figure 3), and a second test is performed,
exploring 4 paths and producing constraint “k <= i-1 && i
== j” (the same as the previous one).

If no extra consideration is taken, for a loop that is sup-
posed to execute 3 iterations, 3 tests need to be performed to
obtain the loop constraint, which can then be used to prove
constraints of the whole program in the 4th test.

A problem of this naive version of our approach is that it
is impossible to tell beforehand how many tests to perform
(if we do not assume the number of iterations). A better so-
lution would be to consider obtaining a fixpoint as the termi-
nation condition. The tests repeat until the failure constraint
generated is equivalent to the previous one. We call this con-
straint a fixpoint. It can be easily proved that once we obtain
a fixpoint, we no longer need to perform tests, because more
tests will just produce the same constraint. (Recall that we
made the assumption of side-effect-free program.)

In this example, a fixpoint is detected at the end of the
second test. Therefore, this constraint, “k <= i-1 && i == j”,
is used to test the whole program (with the loop initializer
k = 0). The resulting constraint is simply “i >= 1 && i ==

k<i

i==j

k<i

i==j

k i

1 2

j
k<i

i==j

k<i

k<i

i==j

3 4

k i

i==j

k<i

k<i

i==j

k<i
i==j

k<i

i==j

k<i

i==j

Figure 3. Subtree testing in the naive approach. 1© sits at
the bottom of the unrolled tree and is first tested. A failure
constraint is summarized. This constraint is turned into a
branch to substitute the left child of 2©. 2© is then tested to
obtain the constraint for 2 iterations, which in turn is used to
substitute the left child of 3©, corresponding to 3 iterations.
Assume that the loop exits in 3 iterations, then the constraint
obtained from 3© can be used to determine the constraint of
the whole program 4©.

j”. The first test explores 3 paths in subtree 1©; the second
explores 4 in subtree 2©; subtree 3© is never tested because
a fixpoint has already been reached; testing subtree 4© adds
3 to the number of paths. In total, 10 paths are explored.

A fixpoint may not be found always. For example, the
loop failure constraint may keep growing with more and
more conjunctive components, and never reaches a fixpoint.
For such programs, we fall back to the traditional compro-
mise, e.g., by pre-defining a maximum number of tests.

3.3 Effectiveness Evidence of Loop Unrolling
Compared to non-partitioning testing approach, in which
one cannot generate a failure constraint for example 2, the
fixpoint mechanism clearly is an improvement in this par-
ticular case. A question to ask is then whether this result
is general. This is believed by the author to be true for at
least a certain kind of programs: the kind of programs that
have loops in them, but the failure constraints for the loop
“shrink” monotonically after a bounded number of itera-
tions.

We now define the “shrink” relation between two con-
straints. Constraint C1 shrinks to constraint C2 if any only if
2

1. C1 ⇒ C2

2. Let V1 be the set of variables that occur in C1, and let V2

be the set of those that occur in C2. C1 6= C2 ⇒ V1 ⊃
V2.

If the constraints shrink monotonically over the tests, then
they must reach a fixpoint after a bounded number of steps.
If the constraints C1 and C2 from two consecutive tests are
equivalent, the they are themselves a fixpoint. If they are not
equivalent, monotonicity requires that the one obtained with
one less iteration to shrink to the one obtained with one more
iteration. Therefore, the latter constraint has at least one less
variable occurring in it. Since there are only bounded num-
ber of variables after a bounded number of iterations (even if
arrays are considered), this shrinking process must terminate
at some point (on or before all variables are consumed).

4. Conclusion
From the two examples provided here, we have shown that
the dynamic testing of two kinds of programs for failure
constraints can be improved by partitioning. For a program
with a sequence of if-statements, it is usually a good idea to
test one big if-statement at a time, and to use the generated
constraint to further test the other if-statements above. For a
program with unbounded loops, a solution to the loop failure
constraint may be obtained in finite time by computing a
fixpoint.

The current implementation in the form of an Eclipse
[1] plugin serves as a research prototype. It does not sup-
port method calls at this time. For loops, it handles only for-
statements, though while-statements and do-while-statements
can be easily rewritten into for-statements.

Another limitation lies in the constraint simplifier. We
have seen in the examples that the intermediate constraints
need to be simplified. This is for efficiency reason. In ex-
ample 1, since we were able to simplify the intermediate
constraints with only one literal remaining, we successfully
reduced the exponential complexity to linear complexity.
However, assume that we were not able to simplify the con-
straints, then the situation would be changed. After the first
test of the 3rd branch (with 4 paths), constraint “op3 s&&
failure || !op3 && failure” would be obtained. The second
test would incur 8 paths if no simplification were performed.
2 more disjunctive components would be added to the con-
straint. The third test would then explore 16 paths without
simplification, exactly the same number as the number of
paths explored without partitioning. This is the worst case
scenario, in which the total number of paths explored be-

2 Condition 2 can be slightly relaxed if we consider the finiteness of the
values that variables in V1 and V2 can take. This relaxation is out of the
scope of this paper.

comes 4 + 8 + 16 = 28. In general, if there are n branches
and the constraints are not simplified, the number of paths is
2∗21 +2∗22 + . . .+2∗2n = 2n+2−4, even bigger than the
non-partitioning approach, which requires to explore 2n+1

paths.
The above best case and worst case scenarios show that

it is crucial to be equipped with a good constraint simplifier.
Currently, the constraint simplifier is ad-hoc, so it may not be
able to simplify all constraints that the tester encounters with
redundant components. This limitation can be eliminated
by using a constraint simplification library that implements
some techniques as in [6].

References
[1] Eclipse. http://eclipse.org/.

[2] Marat Boshernitsan, Roongko Doong, and Alberto Savoia.
From daikon to agitator: lessons and challenges in building
a commercial tool for developer testing. In ISSTA ’06:
Proceedings of the 2006 international symposium on Software
testing and analysis, pages 169–180, New York, NY, USA,
2006. ACM Press.

[3] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated
testing based on java predicates, 2002.

[4] B. A. Davey and H. A. Priestley. Introduction to Lattices and
Order (2nd Edition). Cambridge University Press, April 2002.

[5] Michael D. Ernst, Jake Cockrell, William G. Griswold, and
David Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE Transactions
on Software Engineering, 27(2):99–123, 2001.

[6] Kim Marriott and Peter J. Stuckey. Programming with
Constraints: an Introduction. MIT Press, 1998.

[7] Koushik Sen and Gul Agha. Cute and jcute : Concolic unit
testing and explicit path model-checking tools. In 18th
International Conference on Computer Aided Verification
(CAV’06), volume 4144 of Lecture Notes in Computer Science,
pages 419–423. Springer, 2006.

http://eclipse.org/

	Introduction
	Motivating Examples
	Example 1
	Example 2

	Program Segmentation and Partial Execution
	Efficiency Assessment
	Loop Unrolling
	Effectiveness Evidence of Loop Unrolling

	Conclusion

