
Precise Modeling and Statistical Modeling:

Toward Efficient and Modular Discrete Events

Thomas Huining Feng
CHESS, UC Berkeley

http://www.eecs.berkeley.edu/~tfeng

tfeng@eecs.berkeley.edu
Report for IEOR261 Class

Abstract

Discrete events have been widely accepted as a language
to describe the behavior of timed event-driven systems.
To model timed systems, designers usually benefit from
visual modeling environments, such as Ptolemy II, that
allow to compose and connect functional blocks to con-
struct the systems from smaller components. The re-
sulting designs, which precisely reflects the systems’ de-
sired behavior, can be directly simulated in the environ-
ments, or be deployed in the real applications.

Designers are usually interested in the systems’ sta-
tistical data also. If only statistical data are of interest,
then usually the systems can be re-modeled in such a
way that the precise behavior is ignored, but a few vari-
ables that describe the systems’ statistics remain. It
turns out that this re-modeling often leads to more ef-
ficient execution due to the isolation of irrelevant facts
that exist the precise execution.

This paper starts with a comparison between model-
ing precise execution and statical execution, and con-
cludes with a future direction of bridging and taking
advantage of both.

1 Introduction

Discrete events (DE) have been widely accepted as a
language to describe the behavior of timed systems.
Software environments have been developed for mod-
eling these systems. Approaches to DE systems can
be roughly categorized into two different but related
kinds. The first kind of approaches, which we shall call
event-driven ones here, focuses on the different tasks
in the systems. Events are passed from one task to
another. The tasks are event-driven in the sense that
the operations in them are initiated by the receiving of
input events. Tasks may also generate output events
for other downstream tasks. Ptolemy II [1] (which we
will call Ptolemy hereon for short), a heterogeneous

modeling and simulation environment, is an example of
these. 1 More examples include GPSS [10] and SIMAN
(ARENA) [9], as well as many other simulation environ-
ments based on block languages. Timed state machines
(see Harel’s Statecharts [6] [7] and DCharts [5]) also fall
into this category.

A second kind of software environments for DE fo-
cus on the events that occur in the systems, and the
“causing” relationship between them. We shall charac-
terize these systems as event-centric because the basic
building blocks are events instead of tasks. SIGMA [12],
which implements the event graphs model of computa-
tion [11], is an event-centric simulation environment.
Nodes in the models represent events, while the connec-
tions between the nodes are the (directed) “causing”
relations from one event to another.

The difference in the model representations favored
by the two categories of environments has significant
impact on many other aspects of the DE semantics. In
the following sections, these aspects will be discussed.
Advantages and disadvantages are identified. At the
end of this paper, a direction is pointed out to bridge
them and in this ways take advantage of both.

2 CarWash: An Example Model

In this section, we will examine a CarWash example.
The block language implemented in Ptolemy and the
event graphs implemented in SIGMA are used sepa-
rately to model the same system. In this way, the dif-
ference between the two is shown in practice.

2.1 CarWash model in Ptolemy

In Ptolemy, to design a model with components (built-
in and shipped with Ptolemy, or shipped in a 3rd-party

1Though Ptolemy supports heterogeneous models of computa-
tion, we will only focus on DE here.

1

http://www.eecs.berkeley.edu/~tfeng
mailto:tfeng@eecs.berkeley.edu


library, or created by the users), the designer simply
drags them into the canvas, and creates connections be-
tween their ports that designate data paths.

Figure 1 shows a CarWash model in Ptolemy, in
which a single queue accepts incoming jobs of car wash,
and three servers operate in parallel. The inter-arrival
time between any two cars is randomly generated with
“3+5*random()”, where “random” is a built-in func-
tion that returns a random number in range [0, 1). On
a car’s arrival, if one or more servers are available, then
one of the available servers starts to wash the car, and
becomes busy. The server remains busy until the car
wash job is finished in “5+20*random()” time. If no
server is available when a car arrives, the car stays in
an infinite queue until a server finishes its job.

A node in this graph is a computation unit, which
is called actor in Ptolemy terminology. A rich library
of built-in actors is provided, and the users may also
create their own actors. Actors may be created in two
ways: by writing code in Java following a set of conven-
tions and rules (see [2]), and by composing the existing
actors and grouping them together. We call the actors
designed in Java code atomic actors, which cannot be
further divided. We call the actors created by composi-
tion composite actors.

In this example, a composite actor named Arrival-
Generator is created to generate car arrival events us-
ing existing actors in the Ptolemy library. (The inter-
nal design of this actor is discussed later in Figure 3.)
The three servers are also modeled as composite actors,
each of which can handle one car at a time. A regis-
ter is assigned to each server, which records the current
availability (as a boolean) of the server. When a car
arrives, a test is first performed on the successive reg-
isters for the three servers. (This is by triggering the
bottom ports of the registers.) If a register returns true
to its output port on the left, the true-branch of the
receiving BooleanSwitch is taken, which routes the car
to the available server. If the register’s output is false,
then the false branch is taken, and the next server, if
any, is then tested. If no more server exists for the test,
the car goes to the queue and waits.

When a server accepts a car from its JobInput port,
it serves the car until the wash is finished, at which
time the car leaves via the JobOutput port. Another
port, Availability, outputs the server’s current availabil-
ity information when it is changed (for cars’ entering
the server or leaving). This information is sent to the
corresponding register.

2.2 CarWash Model in Event Graphs

Figure 2 shows a design of the CarWash model in event
graph. The nodes in the graph represent events, each

Run Enter Start

Leave

(Queue, Servers)

3+5*RND

{ Queue++ }

(Servers > 0)

{ Servers--,
Queue-- }

5+20*RND

(Queue > 0)

{ Servers++ }

Figure 2: The CarWash example with a single queue
and three parallel servers, modeled with event graph

with a unique name. The initial event, i.e., the event
that is initially present, is shown with double-lined bor-
der. The text between parentheses below a node con-
tains the names of the parameters that the event takes.
The expression beside an arrow evaluates to a double
number, representing the amount of time delay between
the two events (0 if the expression is not omitted). The
text between curly brackets contains the operation per-
formed when an event is handled. The expression be-
tween parentheses above or beside a curly line is the
boolean condition under which an event can be caused
by another.

In this model, Queue is an integer variable that
records the number of cars in the queue, and Servers
is another integer variable that records the number of
available servers. Initially, they are 0 and 3, respec-
tively.

3 Aspects of the Discrete Events
Implementations

By comparing the two CarWash models, we will dis-
cuss in this section aspects of the DE semantics as they
are implemented in the two simulation environments,
Ptolemy and SIGMA.

3.1 Event Time

The model in Ptolemy and the one in event graph share
commonalities in their semantics.

They are both abstractions of the same system
(though the levels of abstraction differ, which is to be
discussed later). A number of facts in practice are ig-
nored, e.g., how the cars are served. This is because the
model designer is not interested in these facts.

The facts that the designer is interested in are mod-
eled in detail. An important fact among these is the
model time (or virtual time) of events. This model time
(which we will call time hereon) is isolated from the

2



Figure 1: The CarWash example with a single queue and three parallel servers, modeled in Ptolemy

wall clock time. It is represented as a real number in
many simulation environments, such as SIGMA. Each
event is associated with a time that represents when it
was scheduled. These times enforce a total order for all
events that do not occur concurrently. (In fact, a partial
order is sometimes sufficient.) An event that happens
earlier may schedule events in the future by specifying
positive delays for the events.

For those events that are scheduled at exactly the
same time, different mechanisms have been developed
for a deterministic ordering. SIGMA, which employs a
single global queue to arrange scheduled events. The
events scheduled at the same time are ordered either
by their pre-defined priorities (in the form of integers)
or by the sequence in which they are scheduled (ei-
ther FIFO, short for first-in-first-out, or LIFO, last-
in-first-out). A similar mechanism has been taken in
STATEMATE, Harel’s implementation of Statecharts.
DCharts goes one step further by allowing to specify in
a hierarchy of states whether the transitions from the
outer states have higher priority or those from the in-
ner states have higher priority. Transitions from outer
states can be considered “big steps,” while transitions
from inner states are “small steps.” With DCharts’ pri-
ority scheme, it is very easy to choose whether big steps
or small steps are desired when events happen concur-
rently. Only when there is no containment relationship
between their start states does the simulator fall back
on the traditional mechanism of conflict resolution by
making use of priority numbers.

Ptolemy has a quite different mechanism for event

ordering compared to the previous approaches. The
real-numbered time is enhanced with a sequence num-
ber. These two components together form a tuple,
which is called tag to distinguish with the real-numbered
time in other implementations. Let τ1 = (t1, s1) and
τ2 = (t2, s2) be two tags. τ1 ≤ τ2 if any only if
(t1 < t2) ∨ (t1 == t2 ∧ s1 ≤ s2). This partial order be-
tween tags is called dictionary order. In Ptolemy, events
with smaller tags are always handled earlier. (We are
not considering distributed systems in which it may be
beneficial to handle events out of order.) An actor’s
output events are assumed to have the same tag as the
tag of the event that it most recently handles, unless
the actor is a delay actor. As an example, in Figure
1, the Merge actor accepts events from either channels
of its input port, and outputs the events to its output
port. The output event is exactly the same as the last
input event. Their tags are also the equal.

In Figure 3, which shows the inside of CarWash
model’s ArrivalGenerator (recall that it is a composite
actor), a VariableDelay is used to delay each arrival by
a random amount of time. The delay amount is defined
in the Expression actor, which generates a new random
every time a trigger is received on its input port on the
left. Interestingly, a feed back loop is created to repeat-
edly generate arrivals. The initial arrival with ID 1 is
generated by the SingleEvent actor (which executes au-
tonomously exactly once). The signal is then increased
by 1 and fed back to the Merge as the trigger of the
next arrival. The Arrival output port corresponds to
the ArrivalGenerator’s Arrival output port in Figure 1,

3



Figure 3: Inside the ArrivalGenerator in the CarWash
model

through which the arrivals are sent out.
A lot of events may occur at the same tag in Ptolemy.

For example, at the top of Figure 1 Server1’s availabil-
ity is tested. An event is sent to its register as well
as the BooleanSwitch connected to it. The choice of
BooleanSwitch1 (the bottom port) comes from the out-
put of the register. These all happen at the same tag
conceptually. What actually happens is that the arrival
event first triggers the register’s output, then the reg-
ister sends its recorded information to the switch, then
since the switch is now supplied with both an arrival
event and the availability information from the register,
it is able to choose a branch and route the input to it.

For the software to generate a valid order to execute
the actors, which we call firing sequence (since the per-
formance of one operation in an actor is called a firing),
the fixpoint theory is leveraged (refer to [4] for an in-
troduction). The firings are performed in iterations. In
each iteration, each connection in the graph either has
a unique imminent event being handled by the actor at
its end, or no event needs to be handled at the current
tag. We call this event to be handled or the absence of
such an event a signal. A lattice is defined for signals,
with the “absent” element as its bottom. At the begin-
ning of an iteration, all the signals are absent, except
those with scheduled imminent events. In the above
example, the connection between the ArrivalGenerator
and the Merge first has an event present. The software
then tries to find a fixpoint for all the signals at the
current tag by repeatedly applying this rule: If all re-
quired inputs of an actor are present, then its outputs
are also present. Due to this rule, the Merge’s output
is made present, then one input for BooleanSwitch1 is
present, as well as Register1’s trigger. Because Regis-
ter1 only requires a trigger to output, its output is also
present, providing another input to BooleanSwitch1. At
this point, BooleanSwitch1 is provided with all required
inputs, so its output to either of the channels is also
present. This process repeats until all signals are fixed
with a unique value, or “absent.” If a signal cannot be

computed (e.g., a signal on a connection that is part of
an unstable and 0-delay feed back loop), or it has differ-
ent possible values other than “absent,” then a runtime
error is returned. The above process is one iteration in
the model execution. The current tag is increased to
the next most imminent event before the next iteration
starts.

The handling of time in Ptolemy is significantly more
complex than that in many other simulations environ-
ments. It is arguable that this scheme facilitates the de-
sign of many models seen in block language. In SIGMA,
concurrent events are usually handled in either FIFO
order or in LIFO order. This is operationally easy to
implement and to understand, but it lacks a mathe-
matic foundation on which the result can be justified.
That is, it is very arbitrary and sometimes application-
dependent to choose FIFO or LIFO for the concurrent
events. No theory exists so far that guides the designer
to make the right decision. There are also cases in which
neither is desired if, as in the current implementation,
the choice has to be made at design time and may not
be changed at dynamically. Additional priority num-
bers may solve this problem in small-scale models, but
they cause other problems in large models. They are
not easy to use, and there may be unexpected effect on
the actual ordering if the designer fails to consider every
possible combination of concurrent events. Therefore, it
appears that the fixpoint mechanism is more mathemat-
ically justified and eventually easy to use correctly.

3.2 Modularity Consideration

Ptolemy models are modular in three senses. First, each
atomic actor hides its Java implementation but only re-
veals an interface with a set of typed and attributed
ports. Users usually do not modify the implementation
(unless they design their own actors, or subclass exist-
ing actors, which in effect creates new actors). This
black-box abstraction helps to prevent errors caused by
modifying the actors based on false knowledge.

Second, events are the only means of interaction be-
tween actors. This interaction can be very easily iden-
tified in the model design because events traverse via
connections, and all connections are shown as edges in
the graph. Actors do not affect each other in any other
way (if we do not consider such side effects as disk opera-
tions and arbitrariness of the threading in the operating
system). Therefore, an actor is confident of the validity
of its current state.

Third, a model can have hierarchy. Actors (atomic
or composite) can be grouped together to form a larger
actor, revealing only an interface to the outside as an
atomic actor does. Well tested components can be sup-
plied to the designers for use in their models. This, on

4



the one hand, saves debugging time, and on the other
hand, captures domain-specific knowledge in a black
box without requiring the designers to understand it.

The modularity characteristic of Ptolemy helps to sig-
nificantly reduce the possibility of design errors. Event
graphs, however, are not equipped with enough modu-
larity. All the variables are named in the same names-
pace, which may lead to misuse when the number of
variables get large. The number of potentially concur-
rent events also grows exponentially as more events are
created. These facts make it hard to manage large mod-
els.

3.3 Transient Entities and Resident En-
tities

In event graphs, variables usually record the numbers
of certain kinds of objects. In Figure 2, the Queue vari-
able records the number of cars in the queue, and the
Servers variable records the number of available servers.
Operations update those variables by increasing or de-
creasing them, as the consequence of event handling. In
the whole CarWash system there are only two variables
in total, which are called resident entities. Individual
objects, such as cars and servers as distinct objects, are
deliberately omitted from the design.

Contrary to this, in Ptolemy, events are transient.
In the example, events represent distinct car objects.
When a car is served, the corresponding event is delayed
by a proper amount of time. After that, it leaves the
server and disappears from the system. (In the model,
a car that leaves the server actually serves as a trigger
for the queue output if any car is waiting in the queue.)
These car objects are transient entities that get gener-
ated and destroyed repeatedly at run-time, resulting in
poor efficiency if the number of objects gets large.

If the model allows, it is almost always more efficient
to use resident entities than to use transient entities.
However, this may or may not be practical, depending
on the level of abstraction that is interesting to the de-
signer.

Another argument for resident entities is that they
make it very easy to change the number of objects in the
system. In our CarWash example, because the Servers
variable keeps the number of available servers, adding
one more server to the system is as easy as increasing
this variable by one. In Ptolemy, this would require
copy-and-paste of a server and a register, and creating
new connections. Some existing connections also need
to be reroute, e.g., the connection to the Queue’s input
port. Errors are easily made in this modification. To
solve this problem so that the users can easily add or
remove parts of a model (either at design time or at
run-time), higher-order model composition and model

transformation are under active research. [3]

3.4 Level of Abstraction

Model is an abstraction of the reality. From the same
reality, different models can be built at different levels
of abstraction. A model at a higher level of abstraction
generally ignores more facts than one at a lower level.
In the previous example, the event graph model is at
a higher level of abstraction than the Ptolemy model,
because the former does not keep track of individual
cars and servers, but only the current numbers of them.

Resulting from the difference in the levels of abstrac-
tion, the event graph model potentially executes more
efficiently since it has fewer variables. If all the designer
wants is the statistical result from the system (e.g., the
number of cars waiting in the queue as a function of
time), then this appears to be a model at the appropri-
ate level of abstraction.

The Ptolemy model, however, allows more different
analyses to be perform by providing extra facts. Imag-
ine that after building the model, the designer realizes
that another aspect of the system also needs to be ana-
lyzed, e.g., the average of car waiting times. The origi-
nal design in event graph cannot be used any more, be-
cause it does not keep track of the waiting times for indi-
vidual cars. The designer then has to create a separate
event graph model for this new analysis. If the require-
ment keeps changing, the work of redesigning statistical
models for the same system may be overwhelming.

With the Ptolemy model, if the waiting time is to be
analyzed, one only needs to add a plot that shows time
difference between each event’s entering the queue and
leaving the queue.

This comparison shows that models at a higher level
of abstraction tend to execute more efficiently, but those
at a lower level of abstraction tend to be easier to adapt
to the changing requirements.

3.5 Matching Analysis with the Imple-
mentation

Successful stories have been seen in the industry about
using SIGMA to construct event graphs models and to
analyze them. These models are constructed in such a
way that their behavior of interest should be similar to
the actual system. This similarity can be numerically
analyzed, using output analysis [8].

The models build in SIGMA are for statistical pur-
pose only. They cannot be actually deployed in the
hardware or the software of the target system. Ptolemy,
however, allows to generate software in C that is directly
deployed to embedded devices. This helps to tightly

5



Run Enter Start

Leave

(Queue, Servers)

3+5*RND

{ Queue++ }

(Servers > 0)

{ Servers--,
Queue-- }

5+20*RND

(Queue > 0)

{ Servers++ }

Stop

Queue

Run

Stop

QSize
Get

Get

Figure 4: The hierarchical CarWash example as a com-
ponent with ports in its interface

connect the implementation with the analysis. A mod-
ification on the model affects both of the two uses. The
analysis is always up-to-date with the implementation,
unless the designer decides to manually modify the im-
plementation and at the same time to sacrifice this ben-
efit.

4 Hierarchical Composition with
Event Graphs

In the previous section we have seen that event graphs
and Ptolemy DE models both have pros and cons. We
will now discuss the improvements that can be made on
event graphs by introducing advantageous the Ptolemy
hierarchy element. We will also discuss improving the
efficiency of Ptolemy simulation by adding event graphs
to it as a new supported model of computation.

4.1 Compositional Event Graphs with
Variable Scopes

An idea of hierarchical event graphs for better modular-
ity was probably first discussed in [13]. In this section,
we will try to make this idea more concrete, and to find
a direction in which this idea can be implemented.

Figure 4 exemplifies hierarchical event graphs by cre-
ating a separate component for the CarWash system.
This component has 4 ports. The Run port accepts
start of execution events from the external world. These
events carry two attributes as the initial values of Queue
and Servers. The Stop port accepts stop events that
ends a day’s car wash service. When a Stop event is
received, no more cars are allowed to enter, reflected
by the fact that the future car arrival event is can-
celled. (The dash line in the graph represents a can-
celling edge). The cars already waiting in the queue will

c.Run

c.Stop

Start

(Days)

{ Days-- }

(Days > 0)

8*60

0, 3

c : CarWash

Figure 5: The higher level model that uses the CarWash
component to perform simulation for a certain number
of days

still be served, until the queue becomes empty. The ex-
ternal environment can also retrieve the current queue
size by sending a Get event to this component, and the
current queue size will be immediately sent out with
a QSize event. This immediacy is obtained with the
LIFO priority scheme, which guarantees that the queue
size not being changed after receiving Get but before
sending out QSize.

According to [13], the higher level model may be an-
other event graph that contains this component. The
containing model may send an event to the component
and use the result returned from the component as the
delay or in a condition. This is one possible kind of
composition.

Another way of composition, which appears to be
more structural, may be to consider each port of a com-
ponent as a separate event in the higher level model,
as Figure 5 demonstrates. This higher level model per-
forms simulation for a given number of days (specified
in the Days parameter), assuming that on each day the
car wash place opens for 8 consecutive hours. In this
way, this higher level model need not be aware of the
internal implementation of the CarWash component, as
long as it conforms to the established interface.

Another interesting point is that the higher level
model can potentially contain several components of the
same type. In this example, “CarWash” is the type
name, and c on the left is the name of an instance, so
it has all the behavior defined in that type. Another
imaginary model may use two distinct instances of Car-
Wash to simulate two car wash places that open next
to each other. One can simulate the cars’ choosing one
place over the other based on the number of waiting
cars and the speed of the servers. Also, by changing the
initial parameter, one can simulate the shop that contin-
ues to serve unfinished cars the next day: It remembers
how many cars are there left in the queue when the shop
closes (assuming all service stop right at the close time),
and those car owners get coupons for coming back the
next day.

6



An important effect of encapsulation that should be
pursued is the isolation of variables in different compo-
nents. They may be made private, and only the com-
ponents that own them have the access privilege.

4.2 Composing Event Graphs with
Other Models of Computation

By encapsulating the implementation of components,
one no longer need to be aware of the components’ im-
plementation, not event the models of computation in
which they are implemented. Because of this, it should
be possible to compose event graphs components with
models in other domains.

The similar idea of heterogeneous model composition
has been successfully exercised by Ptolemy. It allows the
designers to create components in any supported model
of computation as they see fit, and compose them as a
whole, provided that the composition between the two
models of computation is meaningful.

This triggers the idea of composing event graphs with
other models of computation once the event graphs are
properly encapsulated. All that it needs is to create
an instance of the component, feed in necessary events,
and maybe accept its output events. Currently, the DE
model of computation in Ptolemy seems to be compati-
ble with event graphs. Other models of computation
with a time concept, such as continuous time (CT),
should also work.

For untimed models of computation, such as data flow
and process network (PN), composition is still possible.
A convention needs to be made between the timed parts
and the untimed parts. One example is that the un-
timed parts repeatedly executes the timed parts (as in
Figure 5), but before every execution, the time of the
component is reset to 0. The times of the output events
are unimportant, as long as the events are correctly or-
dered in a sequence.

With event graphs as a component of Ptolemy mod-
els, the designer may obtain faster execution because
the transient entities in the component are not explicitly
modeled. This is practical in some cases. For example,
for a Ptolemy model that implements part of an em-
bedded system, one may be interested in how well this
system works if the power level drops monotonically as
a function of time (assuming that the embedded device
is uncharging). The designer is not interested in pre-
cisely modeling the power supply. In this case, an event
graph with only resident entities can be used in place
of the power supply that generates the current power
voltage according to a statistical distribution.

5 Conclusion

In this paper, we compared the two approaches to dis-
crete events, namely, the block language approach im-
plemented in Ptolemy and the event graphs approach.
An example is created in both approaches to illustrate
the difference. The direction of combining the advan-
tages of the two and making event graphs compositional
with other models of computation is pointed out.

References

[1] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer,
Y. Zhao, and H. Zheng (eds.). Heterogeneous
concurrent modeling and design in java (volume
1: Introduction to ptolemy II). Memorandum
UCB/ERL M05/21, EECS, University of Califor-
nia, Berkeley, CA, USA, Jul 2005.

[2] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer,
Y. Zhao, and H. Zheng (eds.). Heterogeneous con-
current modeling and design in java (volume 2:
Ptolemy ii software architecture). Memorandum
UCB/ERL M05/22, EECS, University of Califor-
nia, Berkeley, CA, USA, Jul 2005.

[3] Adam Cataldo, Elaine Cheong, Thomas Huining
Feng, Edward A. Lee, and Andrew Christopher
Mihal. A formalism for higher-order composition
languages that satisfies the church-rosser property.
Technical Report UCB/EECS-2006-48, EECS De-
partment, University of California, Berkeley, May
9 2006.

[4] B. A. Davey and H. A. Priestley. Introduction to
Lattices and Order (2nd Edition). Cambridge Uni-
versity Press, April 2002.

[5] Thomas Huining Feng. DCharts, a formalism
for modeling and simulation based design of re-
active software systems. Master’s thesis, School
of Computer Science, McGill University, Montréal,
Canada, May 2004.

[6] David Harel. Statecharts: A visual formalism for
complex systems. Science of Computer Program-
ming, 8(3):231–274, 1987.

[7] David Harel and Amnon Naamad. The STATE-
MATE semantics of statecharts. ACM Transac-
tions on Software Engineering and Methodology
(TOSEM), 5(4):293–333, 1996.

[8] A. M. Law and W. D. Kelton. Simulation Model-
ing and Analysis. McGraw-Hill, New York, second
edition, 1991.

7



[9] C. Dennis Pegden, Randall P. Sadowski, and
Robert E. Shannon. Introduction to Simulation Us-
ing SIMAN. McGraw-Hill, Inc., New York, NY,
USA, 1995.

[10] Thomas J. Schriber. Simulation Using GPSS.
Krieger Publishing Co., Inc., Melbourne, FL, USA,
1990.

[11] Lee Schruben. Simulation modeling with event
graphs. Communications of the ACM, 26(11):957–
963, 1983.

[12] Lee W. Schruben. Simulation graphical modeling
and analysis (SIGMA) tutorial. In Winter Simula-
tion Conference, pages 158–161, 1990.

[13] Lee W. Schruben. Building reusable simulators us-
ing hierarchical event graphs. In WSC ’95: Pro-
ceedings of the 27th conference on Winter simula-
tion, pages 472–475, 1995.

8


	Introduction
	CarWash: An Example Model
	CarWash model in Ptolemy
	CarWash Model in Event Graphs

	Aspects of the Discrete Events Implementations
	Event Time
	Modularity Consideration
	Transient Entities and Resident Entities
	Level of Abstraction
	Matching Analysis with the Implementation

	Hierarchical Composition with Event Graphs
	Compositional Event Graphs with Variable Scopes
	Composing Event Graphs with Other Models of Computation

	Conclusion

