
1

Discussion Section 2 (Thomas Feng, 09/04/2008)

/** Scheme-like pairs that can be used to form a list of

 * integers. */

public class IntList {

 public int head;

 public IntList tail;

 /** A List with head and tail. */

 public IntList (int head, IntList tail) {

 this.head = head; this.tail = tail;

 }

 /** A List with null tail, and head = 0. */

 public IntList () { this (0, null); }

 // NOTE: public IntList () { } would also work.

 /** A new IntList containing the ints in ARGS. */

 public static IntList list (Integer ... args) {

 IntList result, p;

 if (args.length > 0)

 result = new IntList (args[0], null);

 else

 return null;

 int k;

 for (k = 1, p = result; k < args.length; k += 1, p = p.tail)

 p.tail = new IntList (args[k], null);

 return result;

 }

 /** True iff X is an IntList containing the same sequence of ints

 * as THIS. */

 public boolean equals (Object x) {

 if (! (x instanceof IntList))

 return false;

 IntList L = (IntList) x;

 IntList p;

 for (p = this; p != null && L != null; p = p.tail, L = L.tail){

 if (p.head != L.head)

 return false;

 }

 if (p != null || L != null)

 return false;

 return true;

 }

}

2

Facts:

IntList is a class. An instance of IntList is an object. We sometimes

use the class name to refer to an instance, say, an IntList. Any object is an

instance of the Object class.

IntList has two fields. The type of head is int, which is a primitive

data type of Java. The type of tail is IntList itself. By defining these two

fields, we declare that any instance of IntList has two data cells – one to hold

an integer, and the other to hold a reference pointing to another instance of

IntList.

Quiz: Can you draw the picture for the case in which the instance pointed to

happens to be this instance itself?)

IntList has two constructors, which are designed to initialize its

instances. One of the constructors is called when we create an instance with

the new keyword.

Quiz: Draw the picture for the following independent uses:

1. new IntList()

2. new IntList(2, new IntList(1, new IntList(new IntList().head, null)))

IntList has two methods. list() is a static method, so it can be

called with no specific IntList instance (using the syntax

IntList.list(…)). It takes variable arguments. Those arguments are

presented as an array (an object of a composite data type) inside the method.

…
10 5 3 7

head tail

3

equals() is not a static (non-static) method because it does not make

sense to tell whether an IntList is equal to the other if no specific instances

are given (IntList.equal(…) does not work).

Quiz: What are the results?

1. IntList.list(1, 2, 3).tail.head

2. new IntList() == new IntList()

3. new IntList().equals(new IntList())

4. IntList.list(1).equals(new IntList(1, new IntList()))

Several important keywords: null – a reference to nothing. It is a

special value that has no type, and cannot be dereferenced; this – a

reference to the current instance that can be used in a non-static method;

instanceof – an operator to test whether an instance belongs to a class.

(Note: this is also used in a constructor to invoke another constructor.)

Quiz: What happens?

1. null.head

2. new IntList().tail.head

3. using this in list()

4. new IntList() instanceof Object

5. null instanceof IntList

4

Questions about the assignment?

class Progs {

 /* 1a. */

 /** The sum of all integers, k, such that 1 <= k < N and

 * N is evenly divisible by k. */

 static int factorSum (int N) {

 /* *Replace the following with the answer* */

 return 0;

 }

 /* 1b. */

 /** Print the set of all sociable pairs whose members are all

 * between 1 and N>=0 (inclusive) on the standard output (one pair

 * per line, smallest member of each pair first, with no

 * repetitions). */

 static void printSociablePairs (int N) {

 /* *Fill in here* */

 }

 /* 2a. */

 /** A list consisting of the elements of A followed by the

 * the elements of B. May modify items of A.

 * Don't use 'new'. */

 static IntList dcatenate(IntList A, IntList B) {

 /* *Replace the following with the answer* */

 return null;

 }

 /* 2b. */

 /** The sublist consisting of LEN items from list L,

 * beginning with item #START (where the first item is #0).

 * Does not modify the original list elements.

 * It is an error if the desired items don't exist. */

 static IntList sublist (IntList L, int start, int len) {

 /* *Replace the following with the answer* */

 return null;

 }

 /* 2c. */

 /** The sublist consisting of LEN items from list L,

 * beginning with item #START (where the first item is #0).

 * May modify the original list elements. Don't use 'new'.

 * It is an error if the desired items don't exist. */

 static IntList dsublist (IntList L, int start, int len) {

 /* *Replace the following with the answer* */

 return null;

 }

}

