
Verifying Hierarchical Ptolemy II Discrete-Event Models using
Real-Time Maude

Kyungmin Baea, Peter Csaba Ölveczkyb,∗, Thomas Huining Fengc, Edward A. Leec, Stavros Tripakisc

aUniversity of Illinois at Urbana-Champaign
bUniversity of Oslo

cUniversity of California, Berkeley

Abstract

This paper defines a real-time rewriting logic semantics for a significant subset of Ptolemy II discrete-
event models. This is a challenging task, since such models combine a synchronous fixed-point semantics
with hierarchical structure, explicit time, and a rich expression language. The code generation features of
Ptolemy II have been leveraged to automatically synthesize a Real-Time Maude verification model from
a Ptolemy II design model, and to integrate Real-Time Maude verification of the synthesized model into
Ptolemy II. This enables a model-engineering process that combines the convenience of Ptolemy II DE
modeling and simulation with formal verification in Real-Time Maude. We illustrate such formal verification
of Ptolemy II models with three case studies.

1. Introduction

Model-based design (MBD) [1, 2, 3] emphasizes the construction of high-level models for system design.
Useful models are executable, providing simulations of system functionality and/or performance during the
design phases as a much less costly alternative to building prototypes and testing them. MBD typically
raises the level of abstraction in system design in general, and for embedded software in particular, from low-
level languages, such as C++ and Java, to high-level modeling formalisms where concepts like concurrency
and time are first-class notions; this makes it feasible to design systems that would be hard or impossible to
design using low-level methods. Ideally, models are translated (code generated) automatically to produce
deployable software. Commercial examples of such modeling and code generation frameworks include Real-
Time Workshop (from The MathWorks) and TargetLink (from dSpace), which generate code from Simulink
models, LabVIEW Embedded from National Instruments, and SCADE from Esterel Technologies.

Many real-time embedded systems – in areas such as avionics, motor vehicles, and medical systems – are
safety-critical systems, whose failures may cause great damage to persons and/or valuable assets. Models of
such embedded systems should therefore be formally analyzed to prove safety properties or identify security
vulnerabilities. Instead of requiring designers to develop models in some formal framework, a promising
approach to formally verify design models is to add formal analysis capabilities to the intuitive, often
graphical, informal modeling languages preferred by practitioners by: (i) providing a formal semantics for
the informal language, (ii) leveraging the code generation features of the informal modeling framework to
automatically translate an informal model to a formal model, and (iii) verifying the synthesized formal model.

For real-time systems, we believe that real-time rewrite theories [4] should be a suitable formalism in
which to define the semantics of time-based modeling languages, for the following reasons:

• Real-time rewrite theories have a natural and “sound” model of timed behavior that makes them
suitable as a semantic framework [4]. This is in contrast to some other formalisms for timed systems

∗Corresponding author

Preprint submitted to Elsevier October 5, 2010

that allow, e.g., behaviors in which an event that takes place at time t1 + t2 (for t2 > 0) happens before
an event that takes place at time t1 (see, e.g., [5]).

• The expressiveness and generality of real-time rewrite theories allow us to give a formal semantics
to languages with advanced functions and data types, new communication models, arbitrary and
unbounded data structures, program variables ranging over unbounded domains, and so on.

• The associated Real-Time Maude tool [6] provides a range of formal analysis capabilities, including
simulation, reachability analysis, and linear temporal logic model checking. Despite the expressive-
ness of real-time rewriting, timed-bounded LTL properties are decidable for a large class of systems
encountered in practice [7].

Real-time rewrite theories and Real-Time Maude have been used to define the formal semantics of – and to
provide a simulator and model checker for – some real-time modeling languages, including: a timed extension
of the Actor model [8], the Orc web services orchestration language [9], a language developed at DoCoMo
laboratories for handset applications [10], a behavioral subset of the avionics standard AADL [11], the visual
model transformation language e-Motions [12], and real-time model transformations in MOMENT2 [13].

Ptolemy II [14] is a well established open-source modeling and simulation tool used in industry. A major
reason for its popularity is Ptolemy II’s powerful yet intuitive graphical modeling language that allows a
user to build hierarchical models that combine different models of computations. In this paper, we focus
on discrete-event (DE) models; such models are explicit about the timing behavior of systems, which is an
essential feature for the high-level specification of embedded system applications [15, 16]. Discrete-event
modeling is a widely used approach for system simulation [17] and has been proposed as a basis for the
synthesis of embedded real-time software [18]. Ptolemy II DE models have a semantics rooted in the fixed-
point semantics of synchronous languages [19], which yields a DE semantics that can easily be combined
with the other models of computation implemented in Ptolemy.

Like many graphical modeling languages, Ptolemy II DE models lack at present formal verification
capabilities. Furthermore, Ptolemy II DE models seem to fall outside the class of languages which can be
given an automaton-based semantics, because: (i) certain constructs, such as noninterruptible timers, require
the use of data structures (such as lists) of unbounded size; (ii) the variables used in, e.g., the transition
systems in FSM actors range over infinite domains such as the integers; (iii) executing a synchronous step
requires fixed-point computations; and (iv) Ptolemy II has a powerful expression language.

This paper defines a Real-Time Maude semantics for a significant subset of hierarchical Ptolemy II DE
models. We have used Ptolemy II’s code generation infrastructure to automatically synthesize a Real-Time
Maude verification model from a Ptolemy II model, and have integrated Real-Time Maude verification into
Ptolemy II, so that Ptolemy II models can be formally analyzed from within Ptolemy II. We also define
useful generic temporal logic propositions for such models, so that a Ptolemy II user can easily define
his/her temporal logic requirements without understanding Real-Time Maude or the formal representation
of a Ptolemy II model. This integration of Ptolemy II and Real-Time Maude enables a model-engineering
process that combines the convenience of Ptolemy II modeling with formal verification in Real-Time Maude.
We illustrate such formal verification with three case studies.

Our work on formalizing Ptolemy II is the first attempt to define a Real-Time Maude semantics for
synchronous real-time languages. Apart from the important result of endowing hierarchical Ptolemy II DE
models with a formal semantics and formal verification capabilities, the main contribution of this work is
to show how Real-Time Maude can define the formal semantics of synchronous real-time languages with
fixed-point semantics and hierarchical structure.

This paper extends the conference paper [20], that first outlined the Real-Time Maude semantics for flat
DE models without general Ptolemy expressions, and the workshop paper [21], that proposed the extension
to hierarchical DE models, by: (i) providing much more detail about our semantics, (ii) explaining how
general Ptolemy expressions are handled, and (iii) describing two additional case studies.

The paper is organized as follows. Sections 2 and 3 introduce Real-Time Maude and Ptolemy II DE
models, respectively. In order to convey the main ideas of our formalization of Ptolemy II DE models
without obscuring the presentation with too much detail, we present the semantics in three steps: Section 4

2

defines the Real-Time Maude semantics of flat Ptolemy II DE models where Ptolemy II expressions are
constants; Section 5 extends that semantics to hierarchical DE models; and Section 6 extends it to general
Ptolemy II expressions. Section 7 briefly explains how Real-Time Maude verification has been integrated
into Ptolemy II and also presents some useful predefined atomic propositions that allow users to easily
specify desired system requirements. Section 8 shows how Ptolemy II’s code generation infrastructure has
been used to synthesize a Real-Time Maude model from a Ptolemy II model. Section 9 illustrates Real-
Time-Maude-based verification in Ptolemy II with three case studies. Section 10 discusses related work, and
Section 11 gives some concluding remarks. More details about the Real-Time Maude semantics of Ptolemy
are given in the longer technical report [22].

2. Real-Time Maude

Real-Time Maude [6] is a language and tool that extends Maude [23] to support the formal specification
and analysis of real-time systems. The specification formalism is based on real-time rewrite theories [4]—an
extension of rewriting logic [24, 25]—and emphasizes ease and generality of specification.

Real-Time Maude specifications are executable under reasonable assumptions, so that a first form of
formal analysis consists of simulating the system’s progress in time by timed rewriting. This can be very
useful for simulating the system, but any such execution gives us only one behavior among the many possible
concurrent behaviors of the system. To gain further assurance about a system one can use model checking
techniques that explore many different behaviors from a given initial state of the system. Timed search and
linear temporal logic model checking can analyze all possible behaviors from a given initial state (possibly
up to a given duration).

2.1. Preliminaries: Object-Oriented Specification in Maude
Since Real-Time Maude specifications extend Maude specifications, we first recall object-oriented speci-

fication in Maude.
A membership equational logic (Mel) [26] signature is a triple Σ = (K,σ, S), with K a set of kinds,

σ = {σw,k}(w,k)∈K∗×K a many-kinded algebraic signature, and S = {Sk}k∈K a K-kinded family of disjoint
sets of sorts. The kind of a sort s is denoted by [s]. A Mel algebra A contains a set Ak for each kind k,
a function Af : Ak1 × · · · × Akn

→ Ak for each operator f ∈ σk1···kn,k, and a subset As ⊆ Ak for each sort
s ∈ Sk. TΣ,k and TΣ(X)k denote, respectively, the set of ground Σ-terms with kind k and of Σ-terms with
kind over the set X of kinded variables.

A Mel theory is a pair (Σ, E), where Σ is a Mel signature, and E is a set of conditional equations
of the form (∀X) t = t′ if

∧
i pi = qi ∧

∧
j wj : sj and conditional memberships of the form (∀X) t :

s if
∧

i pi = qi ∧
∧

j wj : sj , for t, t′ ∈ TΣ(X)k, s ∈ Sk, the latter stating that t is a term of sort s, provided
the condition holds. Order-sorted notation s1 < s2 can be used to abbreviate the conditional membership
(∀x : [s1]) x : s2 if x : s1. Similarly, an operator declaration f : s1× · · · × sn → s corresponds to declaring f
at the kind level and giving the membership axiom (∀x1 : k1, . . . , xn : kn) f(x1, . . . , xn) : s if

∧
1≤i≤n xi : si,

where [si] = ki.
The intuitive meaning is that terms having sorts are well-defined, while elements without sorts, such

as fact(−5) and fact(3 − 1) in some signature defining the factorial function fact , are either error (or
“undefined”) values such as fact(−5), or are expressions, such as fact(3− 1), that are not yet “computed,”
but that may evaluate to well-sorted terms when fully evaluated.

A Maude module specifies a rewrite theory [25, 24] of the form (Σ, E ∪ A,R), where (Σ, E ∪ A) is a
membership equational logic theory with A a set of equational axioms such as associativity, commutativity,
and identity, so that equational deduction is performed modulo the axioms A. The theory (Σ, E ∪ A)
specifies the system’s state space as an algebraic data type. R is a collection of labeled conditional rewrite

3

rules specifying the system’s local transitions, each of which has the form1

[l] : t−→ t′ if
m∧

j=1

uj = vj ,

where l is a label. Intuitively, such a rule specifies a one-step transition from a substitution instance of t to
the corresponding substitution instance of t′, provided the condition holds; that is, the substitution instances
of the equalities uj = vj follow from E ∪ A. The rules are implicitly universally quantified by the variables
appearing in the Σ-terms t, t′, uj , and vj . The rules are applied modulo the equations E ∪A.2

We briefly summarize the syntax of Maude. Operators are introduced with the op keyword: op f :
s1 . . . sn -> s. They can have user-definable syntax, with underbars ‘_’ marking the argument positions,
and are declared with the sorts of their arguments and the sort of their result. Some operators can have
equational attributes, such as assoc, comm, and id, stating, for example, that the operator is associative
and commutative and has a certain identity element. Such attributes are then used by the Maude engine
to match terms modulo the declared axioms. An operator can also be declared to be a constructor (ctor)
that defines the carrier of a sort. There are three kinds of logical statements: equations, introduced with the
keywords eq, or, for conditional equations, ceq; memberships, declaring that a term has a certain sort and
introduced with the keywords mb and cmb; and rewrite rules, introduced with the keywords rl and crl. The
mathematical variables in such statements are either explicitly declared with the keywords var and vars,
or can be introduced on the fly in a statement without being declared previously, in which case they have
the form var:sort. We will make frequent use of the fact that an equation f(t1, . . . , tn) = t with the owise
(for “otherwise”) attribute can be applied to a subterm f(. . .) only if no other equation with left-hand side
f(u1, . . . , un) can be applied.3 Finally, a comment is preceded by ‘***’ or ‘---’ and lasts until the end of
the line.

In Maude, kinds are not explicitly declared; instead the kind of a sort s is denoted [s]. Maude also
supports the declaration of partial functions using the arrow ‘~>’:

op f : s1 ... sn ~> s .

The above declaration is equivalent to the kinded declaration

op f : [s1] ... [sn] -> [s] .

In object-oriented Maude modules one can declare classes and subclasses. A class declaration

class C | att1 : s1, ... , attn : sn

declares an object class C with attributes att1 to attn of sorts s1 to sn. An object of class C in a given state
is represented as a term

< O : C | att1 : val1, ..., attn : valn >

of the built-in sort Object, where O is the object’s name or identifier, and where val1 to valn are the
current values of the attributes att1 to attn and have sorts s1 to sn. Objects can interact with each other
in a variety of ways, including the sending of messages. A message is a term of the built-in sort Msg, where
the declaration

msg m : s1 . . . sn -> Msg

1In general, the condition of such rules may not only contain equations uj = vj , but also rewrites wi −→ w′i and memberships
tk : sk; however, the specification in this paper does not use this extra generality.

2Operationally, a term is reduced to its E-normal form modulo A before any rewrite rule is applied in Maude. Under the
coherence assumption [27] this is a complete strategy to achieve the effect of rewriting in E ∪A-equivalence classes.

3A specification with owise equations can be transformed to an equivalent system without such equations [23].

4

defines the syntax of the message (m) and the sorts (s1 . . . sn) of its parameters. In a concurrent
object-oriented system, the state, which is usually called a configuration, is a term of the built-in sort
Configuration. It has the structure of a multiset made up of objects and messages. Multiset union for
configurations is denoted by a juxtaposition operator (empty syntax) that is declared associative and com-
mutative and having the none multiset as its identity element, so that order and parentheses do not matter,
and so that rewriting is multiset rewriting supported directly in Maude. The dynamic behavior of object sys-
tems is axiomatized by specifying each of its concurrent transition patterns by a rewrite rule. For example,
the configuration fragment on the left-hand side of the rule

rl [l] : m(O,w)

< O : C | a1 : x, a2 : y, a3 : z >

=>

< O : C | a1 : x + w, a2 : y, a3 : z >

m’(y,x)

contains a message m, with parameters O and w, and an object O of class C. The message m(O,w) does not
occur in the right-hand side of this rule, and can be considered to have been removed from the state by the
rule. Likewise, the message m’(y,x) only occurs in the configuration on the right-hand side of the rule, and
is thus generated by the rule. The above rule, therefore, defines a parametrized family of transitions (one for
each substitution instance) in which a message m(O,w) is read and consumed by an object O of class C, with
the effect of altering the attribute a1 of the object and of sending a new message m’(y,x). By convention,
attributes, such as a3 in our example, whose values do not change and do not affect the next state of other
attributes need not be mentioned in a rule or an equation. Attributes, like a2, whose values influence the
next state of other attributes or the values in messages, but are themselves unchanged, may be omitted from
right-hand sides of rules/equations.

A subclass inherits all the attributes, equations, and rules of its superclasses4, and multiple inheritance
is supported.

2.2. Object-Oriented Specification in Real-Time Maude
A Real-Time Maude timed module specifies a real-time rewrite theory [4], that is, a rewrite theory

R = (Σ, E ∪A,R), such that:

1. (Σ, E ∪ A) contains an equational subtheory (ΣTIME , ETIME) ⊆ (Σ, E ∪ A), satisfying the TIME
axioms in [4], which specifies a sort Time as the time domain (which may be discrete or dense).
Although a timed module is parametric on the time domain, Real-Time Maude provides some prede-
fined modules specifying useful time domains. For example, the modules NAT-TIME-DOMAIN-WITH-INF
and POSRAT-TIME-DOMAIN-WITH-INF define the time domain to be, respectively, the natural num-
bers and the nonnegative rational numbers, and contain the subsort declarations Nat < Time and
PosRat < Time. These modules also add a supersort TimeInf, which extends the sort Time with an
“infinity” value INF.

2. The sort of the “states” of the system has the designated sort System.
3. The rules in R are decomposed into:

• “ordinary” rewrite rules that model instantaneous change, and

• tick (rewrite) rules that model the elapse of time in a system. Such tick rules have the form
l : {t}

u−→ {t′} if cond, where t and t′ are of sort System, and { } is a built-in constructor of
a new sort GlobalSystem. To each such tick rewrite rule there is an associated term u of sort
Time denoting the duration of the rewrite. In Real-Time Maude, tick rules, together with their
durations, are specified with the syntax

4The attributes, equations, and rules of a class cannot be redefined by its subclasses, but subclasses may introduce additional
attributes, equations, and rules.

5

crl [l] : {t} => {t′} in time u if cond .

The initial state of a real-time system so specified must be reducible to a term {t0}, for t0 a ground term
of sort System, using the equations in the specification. The form of the tick rules then ensures uniform
time elapse in all parts of a system.

2.3. Formal Analysis in Real-Time Maude
We summarize below the Real-Time Maude analysis commands. All Real-Time Maude analysis com-

mands and their semantics are explained in [6].
Real-Time Maude’s timed fair rewrite command simulates one behavior of the system up to a certain

duration. It is written with syntax

(tfrew t in time <= timeLimit .)

where t is the term to be rewritten (“the initial state”), and timeLimit is a ground term of sort Time.
Real-Time Maude provides a variety of search and model checking commands for further analyzing timed

modules by exploring all possible behaviors—up to a given number of rewrite steps, duration, or satisfaction
of other conditions—that can be nondeterministically reached from the initial state. For example, Real-Time
Maude extends Maude’s search command—which uses a breadth-first strategy to search for states that are
reachable from the initial state and match the search pattern and satisfy the search condition—to search for
states that can be reached within a given time interval from the initial state.

Real-Time Maude extends Maude’s linear temporal logic model checker to check whether each behavior
(possibly “up to a certain time,” as explained in [6]) satisfies a temporal logic formula. State propositions,
possibly parametrized, should be declared as operators of sort Prop, and their semantics should be given by
equations of the form

eq {statePattern} |= prop = b and ceq {statePattern} |= prop = b if cond

for b a term of sort Bool, which defines the state proposition prop to hold in all states {t} such that {t}
|= prop evaluates to true. A temporal logic formula is constructed by state and clocked5 propositions and
temporal logic operators such as True, False, ~ (negation), /\, \/, -> (implication), [] (“always”), <>
(“eventually”), U (“until”), and W (“weak until”). The command

(mc t |=u formula .)

is the model checking command which checks whether the temporal logic formula formula holds in all
behaviors starting from the initial state t.

Currently, such model checking only verifies untimed (and clocked) LTL properties. However, as explained
in detail in [28], Real-Time Maude also comes with model checking features for important subclasses of metric
(or “timed”) temporal logic properties [29, 30] for the subclass of object-based Real-Time Maude models
specified according to the guidelines in [6]. For example, the bounded response model checking command

(br t |= p => <>le(r) q .)

for atomic propositions p and q, initial state t, and time value r, checks whether, in each path from t, a
state satisfying p will be followed by a state satisfying q within time r. In metric LTL, this corresponds to
the formula 2(p→ 3≤r q). Likewise, the minimum separation model checking command

(ms t |= p separated by >= r .)

model checks the property that the minimum separation between two non-consecutive p-states is at least r;
that is, once ¬p starts to hold, it will holds continuously for at least time r (this corresponds to the metric
LTL property 2(p→ (pW (2≤r¬p))).)

5A clocked proposition involves both the state and the duration of the path leading to the state (the “system clock”), as
explained in [6].

6

3. Ptolemy II and its DE Model of Computation

The Ptolemy project6 studies modeling, simulation, and design of concurrent, real-time, embedded sys-
tems. Ptolemy II is a modeling environment that supports multiple modeling paradigms, which we call
models of computations (MoCs), that govern the interaction between concurrent components. Modeling
with heterogeneous MoCs [14] is a key research area of the Ptolemy project. The supported MoCs include
FSM (finite state machine), dataflow, and DE (discrete events). Such MoCs can be composed to create
heterogeneous models with well-defined semantics.

3.1. Discrete-Event Models
A Ptolemy II model consists of a set of interconnected actors. Actors have a well defined component

interface, which includes input ports and output ports that represent points of communication for an actor,
and parameters that are used to configure the operation of an actor. Central to actor-oriented design are
the communication channels that pass data from one port to another through channels.

A composition of actors, including the interconnections between their ports, can be encapsulated as an
actor in its own right, which may also have input and output ports. Such an actor obtained by composition
is called a composite actor. An input port of a composite actor can be connected to input ports of the actors
inside, which means that external inputs are transferred to those inner actors. Similarly, an output port of
an inner actor can be connected to an output port of its enclosing composite actor. An actor that is not
composite is called an atomic actor.

The focus of this paper is the formalization of Ptolemy II discrete-event (DE) models. In DE, the data
sent and received at actors’ ports are events. Each event has two components: a tag and a value. According
to the tagged signal model [31], a tag t is a pair (τ, n) ∈ R≥0×N, where τ is the timestamp denoting the model
time at which the event occurs, and n is the microstep index. Microstep indices are useful for modeling
multiple events with identical timestamps happening in sequence, where earlier events may cause later ones.
Tags are totally ordered using a lexicographical order: (τ1, n1) ≤ (τ2, n2) if and only if τ1 < τ2, or τ1 = τ2
and n1 ≤ n2. Two events are simultaneous if they have identical tags.

The operational semantics of DE in Ptolemy II can be explained with the pseudo-code in Figure 1. An
event queue is used for the execution. Events in the event queue are ordered by their tags. Initially, the
event queue is empty. At the beginning of the execution, all actors are initialized, and some actors may post
initial events to the event queue. Operation then proceeds by iterations. In each iteration, the events with
the smallest tag are extracted from the event queue and presented to the actors that receive them. Those
actors are fired, which means they are invoked to process their input events, and they may also output events
through their output ports. A difference between the DE MoC in Ptolemy II and standard DE simulators
is that the former incorporates a synchronous-reactive semantics for processing simultaneous events [19].
When events are extracted from the event queue for the receiving actors to process, the semantics for that
iteration is defined as the least fixed-point of the output values, in a way similar to a synchronous model [32].
Concretely, the outputs are first set to a predefined value called unknown. Then, the actors receiving events
are fired in an arbitrary order, possibly repeatedly, until a fixed-point of all output values is reached. This
allows Ptolemy II models to have feedback loops. If the model contains causality cycles, the fixed-point
may have ports with value unknown. Finally, when the fixed-points for the port values have been found,
the actors that have received input or have been fed events are executed, in the sense that their states are
updated and that they may generate future events that are inserted into the event queue (postfire).

3.2. Atomic Actors
We briefly introduce a subset of the Ptolemy II atomic actors whose semantics has been formalized in

Real-Time Maude. Their semantics is defined in terms of the actions init, fire, and postfire. (We ignore
other actions, such as prefire and finalize, which are not important in this paper.)

6http://ptolemy.org/

7

http://ptolemy.org/

Q := empty; // Initialize the global event queue to be empty.

for each actor A do

A.init(); // Initialize actor A, and possibly generate initial events, stored in Q.

end for;

while Q is non-empty do

E := set of all simultaneous events at the head of Q;

remove E from Q;

initialize ports with values in E or "unknown";

while port values changed do

for each actor A do

A.fire(); // May change port values

end for;

end while; // Fixed-point reached for the current tag

for each actor A do

A.postfire(); // Updates actor state, and may generate new queue events

end for;

end while;

Figure 1: Pseudo-code of Ptolemy II DE semantics.

• Clock. Ptolemy’s clock actors have as parameters a clock period and same-sized arrays values and
offsets. In each period, a clock generates events with given values and offsets within the period. More
precisely, if the period is p, then, for each n ≥ 0 and i ≤ length(values), the clock generates an event
with value values(i) at time n · p + offsets(i). For example, if the period is 5, the values are {3, 8},
and the offsets are {2, 4}, then an event with value 3 is generated at times 2, 7, 12, 17, 22, . . . , and
an event with value 8 is generated at times 4, 9, 14, That is, the init action posts an event to
the event queue with timestamp 0 for itself to process; the fire action is triggered by that event and
sends the value to the output port; and the postfire action posts the next event to the event queue,
with timestamp equal to the beginning of the next period.

• Current Time. Ptolemy’s current time actor produces an output token on each firing with a value
that is the current model time. That is, the init and postfire actions do nothing, and the fire action
consumes an input event, and outputs an event whose timestamp and value are both equal to the
timestamp of the input event.

• Pulse. When an input is received, a pulse actor outputs pulses with values given by the values
parameter; the parameter indexes specifies when those values should be produced. A zero is produced
when the iteration count does not match an index. For example, if the indexes parameter is “{1, 3, 0,
2, 4}”, and the values are stored in array A, then the output in the first 5 invocation of fire is A[1],
A[3], A[0], A[2], and A[4]. After that, the output is always 0, unless yet another parameter, repeat, is
set to true, in which case the output is repeated. The init action does nothing, fire outputs a value,
and postfire updates the number of times fire has been invoked.

• Time Delay. A timed delay actor propagates an incoming event after a given delay, which is given by
the delay parameter. If the delay parameter is 0.0, then there is a ”microstep” delay in the generation
of the output event.

• Variable Delay. A variable delay actor works in a similar way as a timed delay actor, except that the
amount of time delay is specified by an incoming token through the delay port.

• Timer. The difference between a timer actor and a delay actor is that the value of the generated
output of a timer is not the same as the input, but is given by the output parameter of this actor. The
length of the delay is specified by the input received in the actor’s lone input port.

8

• Noninterruptible Timer. A noninterruptible timer is similar to a normal timer, but with the difference
that the noninterruptible timer actor delays the processing of a new input if it has not finished pro-
cessing a previous input. That is, while an input event is being delayed and the corresponding output
has not been sent, other input events are queued.

• Timed Plotter. A timed plotter records its received events and the times they were received.

• Expression. An expression actor contains an expression that specifies the value of its output as a
function of the values of its inputs.

• (Atomic) Finite State Machine (FSM) Actor. A finite state machine (FSM) actor is a transition
system containing a finite set of states (or “locations”), a finite set of “variables,” and a finite set of
transitions. A transition has a guard expression, and can contain a set of output actions. Output
actions may assign values to the variables belonging to the FSM actor and/or may send values to the
output ports of the actor. It is assumed in Ptolemy II that there is never more than one enabled
transition when an FSM actor is fired. If there is exactly one enabled transition then it is chosen and
the actions contained by the transition are executed. Under the DE director, only one transition step
is performed in each iteration.

3.3. Composite Actors
An essential feature of Ptolemy II is hierarchy. It helps hide internal details of parts of a model. It is

therefore crucial for managing model complexity, and for achieving modularity and scalability.
Ptolemy II hierarchical models contain components (or actors) that are themselves Ptolemy II models.

Such a hierarchical model can again be encapsulated and be seen as a single composite actor. An inner actor
of a DE composite actor is executed if that inner actor receives some events at its input ports or if it is fed
an event from the event queue. Figure 2 illustrates a hierarchical composition of actors.

A0 A3 A4

A5
A2

A7
A1 A6

Figure 2: A hierarchical composition of actors. A0–A7 are actors, A0 and A3 are composite actors, triangles
are ports, and dashed lines are connections.

In Ptolemy II, each composite actor can have its own model of computation, given by the director of the
actor, to support heterogeneous modeling. If the director of a composite actor is the same as the director
of the parent actor, it is called a transparent actor. In this paper, we consider only transparent cases since
we verify DE models.

3.4. Modal Models
Modal models are finite state machines where each state has a refinement actor, which is either a com-

posite actor or an FSM actor. Modal models are an important concept for hierarchical modeling, because
FSMs are widely accepted for modeling mode changes and reaction to events. The input and output ports
of the refinements are the same as those of the modal model. In the top level of a modal model, the output
ports are regarded as both input and output ports so that the transitions of modal models may use the
evaluation result of refinement actors in the current computation step. The left-hand side of Fig. 3 shows a
modal model with two states.

9

ModalModel

P1

P2

P3
S0 S1

S0
P1

P2

P3
S1

P1

P2

P3

CompositeActor

S0

S1

Controller

S0 S1

Figure 3: A modal model with 2 states and its equivalent representation as a composite actor. S0 and
S1 are states, diamonds are input/output ports, and a solid line in the right-hand side means a coupled
input/output ports.

When a modal model fires, the refinement of the current state is fired and the other refinements are
frozen. The guards of all outgoing transitions from the current state of the modal model are then evaluated.
If exactly one of those guards is true, then the transition is taken and the actions of the transition are
executed. The refinement of the next state will be executed in the next iteration. In case of a conflict
between the refinements and the parent actor, the latter overwhelms the former. For example, if the FSM
controller of a modal model and the refinement of a current state are trying to write different values to the
same output port, then the value of the FSM controller is taken.

A modal model can be seen as syntactic sugar for a composite actor with frozen inner actors, as shown
in Fig. 3, where the right-hand side shows the equivalent composite-actor representation of the modal model
in the left-hand side. That is, a modal model A is semantically equivalent to a composite actor Ã, with
the same ports, that has the controller FSM actor and the refinement actors as inner actors, so that: (i)
the ports are connected as indicated in Fig. 3; (ii) the controller FSM actor is fired after the refinement
actors are fired; (iii) only the refinement inner actors corresponding to the current state of the controller are
evaluated, whereas the other refinement actors are frozen, in the sense that their states do not evolve and
the values of their outports are ignored; and (iv) if an output port of the controller FSM actor has no value
but its coupled input port has some value, then the output port will have the same value as the input port.

3.5. Subset of Ptolemy II with Real-Time Maude Semantics
We currently support Real-Time Maude analysis of transparent discrete event (DE) Ptolemy II models

constructed by the following actors: composite actors, modal models, finite state machine (FSM), timed
delay, variable delay, clock, current time, timer, noninterruptible timer, pulse, ramp, timed plotter, set vari-
able, expression, single event actors, and algebraic actors such as add/subtract, const, and scale. We also
support connections with multiple destinations, split signals, and both single ports and multi-input ports.

3.6. Code Generation Infrastructure
Ptolemy II is built in a highly modular manner, with flexible and extensible components that communi-

cate through generic interfaces. This type of inter-component communication introduces overhead, however,
which generally results in component models that are slower than custom-built code. To regain efficiency,
Ptolemy II offers a code generation capability with which inter-component communication is reduced by
generating “monolithic” code with highly specialized components.

The code generation framework uses an adapter-based mechanism. A codegen adapter is a component
that generates code for an actor. Each actor may have multiple associated adapters, one for each target
language (such as C and VHDL). An adapter essentially consists of a Java class file and a code template file
that together specify the actor’s behavior. The latter contains code blocks written in the target language.
Supplied with a set of adapters and an initial model, the code generation framework examines the model

10

structure and invokes the adapters to harvest code blocks from the code template files. The main advantages
of this scheme are, first, that it decouples the writing of Java code and target code (otherwise the target
code would be wrapped in strings and be interspersed with Java code), and second, that it allows using a
target language specific editor while working on the target language code blocks.

Section 8 explains how we have used this code generation infrastructure to synthesize a Real-Time Maude
model from a Ptolemy II DE model.

3.7. Example: A Simple Traffic Light System
Figure 4 shows a Ptolemy II DE model of a simple traffic light system that will be used as a running

example to illustrate the Real-Time Maude representation and formal analysis of Ptolemy II models. The
traffic light system consists of one car light and one pedestrian light at a pedestrian crossing. Each light
is represented by a set of set variable actors (Pred and Pgrn represent the pedestrian light, and Cred,
Cyel, and Cgrn represent the car light). A light is on iff the corresponding variable has the value 1. The
lights are controlled by two finite state machine (FSM) actors, CarLight and PedestrianLight, that send
values to set the variables; in addition, CarLight sends signals (that are delayed by one time unit) to the
PedestrianLight actor through its Pgo and Pstop output ports.

Figure 4: A simple traffic light model in Ptolemy II.

Figure 5a shows the FSM actor PedestrianLight. This actor has three input ports (Pstop, Pgo, and
Sec), two output ports (Pgrn and Pred), three internal states, and three transitions. This actor reacts to
signals from the car light (by way of the delay actors) by turning the pedestrian lights on and off. For
example, if the actor is in local state Pred and receives input through its Pgo port, then it goes to state
Pgreen, outputs the value 0 through its Pred port, and outputs the value 1 through its Pgrn port.

Figure 5b shows the FSM actor CarLight. Assuming that the clock actor sends a signal every time unit,
we notice, e.g., that one time unit after both the red and yellow car lights are on, these are turned off and
the green car light is turned on by sending the appropriate values to the variables (output: Cred = 0; Cyel

= 0; Cgrn = 1). The car light then stays green for two time units before turning yellow.

4. Real-Time Maude Semantics of Flat Ptolemy II DE Models

To convey our ideas underlying the Real-Time Maude formalization of the semantics of Ptolemy II
DE models without introducing too many details, this section presents a slightly simplified version of our
semantics, in that we present a semantics for

1. flat Ptolemy models; that is, models without hierarchical actors, and
2. assume that all Ptolemy II expressions are defined by constants and simple arithmetic and comparison

operations.

Section 5 shows how this slightly simplified semantics is extended to hierarchical models, and Section 6
shows how we deal with general Ptolemy expressions that include variables. The entire executable Real-
Time Maude semantics is available at http://www.ifi.uio.no/RealTimeMaude/Ptolemy.

11

http://www.ifi.uio.no/RealTimeMaude/Ptolemy

(a) PedestrianLight (b) CarLight

Figure 5: The FSM actors for pedestrian lights and car lights.

4.1. Representing Flat Ptolemy II DE Models in Real-Time Maude
This section explains how a flat Ptolemy II DE model is represented as a Real-Time Maude term in (the

slightly simplified version of) our semantics. We only show the representation for a subset of the atomic
actors in Ptolemy II DE models, and refer to [22] for the definition of the other actors.

Our Real-Time Maude semantics is defined in an object-oriented style, where the global state has the
form of a multiset

{actors connections < global : EventQueue | queue : event queue >}

where

• actors are objects corresponding to the actor instances in the Ptolemy model,

• connections are the connections between the ports of the different actors, and

• < global : EventQueue | queue : event queue > is an object whose queue attribute denotes the
global event queue.

This section explains the representation of these entities in Real-Time Maude, and Section 4.2 defines
the semantics of the behaviors of the Ptolemy II models.

4.1.1. Actors
Each Ptolemy II actor is modeled in Real-Time Maude as an object instance of a subclass of the following

class Actor:

class Actor | ports : Configuration, parameters : Configuration .

The ports attribute denotes the set of ports of the actor. The parameters attribute represents the pa-
rameters of the actor, together with their user-defined values/expressions. In our model, both ports and
parameters are modeled as objects. In particular, a parameter is represented as an object, with a name (the
identifier of the parameter object, which is a quoted identifier (Qid)) and an attribute value:

sorts ParamId . subsort Qid < ParamId < Oid . --- names for parameters

class Parameter | value : Value .

12

This simple parameter model is extended in Section 6, where we consider parameters whose values are
expressions that may include variables.

Some actors, such as current time actors and timed plotters, have an internal clock measuring “model
time.” Such actors are represented as object instances of subclasses of the following class TimeActor, where
currentTime denotes the current model time:

class TimeActor | currentTime : Time . subclass TimeActor < Actor .

Clocks. As explained above, the Ptolemy parameters of an actor (period, offsets, and values for clock actors)
are represented in the parameters attribute. The only additional attribute needed for the Real-Time Maude
representation of clock actors is the attribute index keeping track of the “index” of the offsets and values
arrays for the next event to be generated:

class Clock | index : Nat . subclass Clock < Actor .

For instance, the initial state of the clock described above is represented by the object7

< ’Clock : Clock | index : 0,

parameters : < ’period : Parameter | value : # 5 >

< ’offsets : Parameter | value : {# 2.0, # 4.0} >

< ’values : Parameter | value : {# 3, # 8} >,

ports : < ’output : OutPort | value : # 0, status : absent >

< ’trigger : InPort | value : # 0, status : absent >

< ’period : InPort | value : # 0, status : absent > >

Current Time. Since the superclass TimeActor already contains the current time in the currentTime at-
tribute, the CurrentTime subclass does not add any new attributes:

class CurrentTime . subclass CurrentTime < TimeActor .

Timed Plotter. A timed plotter records its received data values and the times they were received. In
our representation, these values are recorded as a list (source: s1 time: t1 value: v1) ++ ... ++
(source: sn time: tn value: vn) of triples (source: si time: ti value: vi), denoting, respectively,
the port from which the data was received, the time it was received, and the received data value. Since such
an actor must keep track of the currentTime, the TimedPlotter class is a subclass of TimeActor:

class TimedPlotter | eventHistory : EventHistory . subclass TimedPlotter < TimeActor .

sort EventTriple EventHistory .

subsort EventTriple < EventHistory .

op source:_time:_value:_ : EPortId Time Value -> EventTriple [ctor] .

op emptyHistory : -> EventHistory [ctor] .

op _++_ : EventHistory EventHistory -> EventHistory [ctor assoc id: emptyHistory] .

Other Actors. Since the actor parameters are represented in the parameters attribute of the superclass
Actor, most actors do not add any new attributes to the attributes inherited from Actor. The pulse actor
adds an attribute index that keeps track of the iteration count:

class Delay . --- timed delay

class VariableDelay .

class Timer .

class Pulse | index : Nat .

subclass Delay VariableDelay Timer Pulse < Actor .

7We refer to Section 4.1.2 for the representation of ports, and to Section 6.1.1 the Real-Time Maude representation of
Ptolemy II expressions; for example, the value 5 in such expressions is represented by the term # 5.

13

A noninterruptible timer needs some attributes to keep track of the state: processing is true when the
timer has not finished processing previous inputs. The waitQueue is a list that stores (the values of) the
inputs received while the timer is “busy.” This list is therefore a list of time values declared in the usual
Maude style. The Real-Time Maude declaration of this class is

class NonInterruptibleTimer | processing : Bool, waitQueue : TimeList .

subclass NonInterruptibleTimer < Actor .

sort TimeList . subsort Time < TimeList .

op emptyList : -> TimeList [ctor] .

op __ : TimeList TimeList -> TimeList [ctor assoc id: emptyList] .

Finite State Machine (FSM) Actors. An FSM-Actor is characterized by its current state, its transitions,
and its local variables (the latter are represented by parameters):

class FSM-Actor | currState : Location, initState : Location, transitions : TransitionSet .

subclass FSM-Actor < Actor .

A location is the sort of the local “states” of the transition system. In particular, quoted identifiers (Qids)
are state names:

sort Location . subsorts Qid < Location .

We model the set of transitions as a semi-colon-separated set of transitions of the form
s1 --> s2 {guard: g output: pi1 |-> ei′1

;...; pik
|-> ei′k

set: vj1 |-> ej′1
;...; vil

|-> ej′l
}

for states/locations s1 and s2, Boolean expression g, port names pi, variables vi, and expressions ei. The
guard, output, and/or set parts may be omitted. In Real-Time Maude, such sets of transitions are declared
as follows:

sorts Transition TransitionSet . subsort Transition < TransitionSet .

op _-->_‘{_‘} : Location Location TransBody -> Transition [ctor] .

op emptyTransitionSet : -> TransitionSet [ctor] .

op _;_ : TransitionSet TransitionSet -> TransitionSet [ctor assoc comm id: emptyTransitionSet] .

sort TransBody .

op guard:_output:_set:_ : Exp AssignMap AssignMap -> TransBody [ctor] .

In the flat setting, we assume that all expressions consist of

• constants (which have sort Value) : (0, 1, true, . . .)

• variables (which are represented by parameter objects)

• simple arithmetic, logical, and comparison operators: +, ×, &&, !, <,

• isPresent(P), which is true if there is some (current) input in the given port P, and is false if there
is no current input in port P.

4.1.2. Ports
A port is represented as an object, with a name (the identifier of the port object), a status (unknown,

present, or absent, denoting the “current” knowledge about whether there is input/output in the current
iteration), and a value. We also have subclasses for input and output ports:

14

sorts PortId . subsort Qid < PortId < Oid . --- names for (local) ports

class Port | status : PortStatus, value : Value .

class InPort . subclass InPort < Port .

class OutPort . subclass OutPort < Port .

sort PortStatus .

ops unknown present absent : -> PortStatus [ctor] .

We also support multiple input ports, which are connected to multiple output ports:

class MultiInPort | source : EPortIdSet . subclass MultiInPort < InPort .

4.1.3. Connections
A connection is a term po ==> pi1 ; . . . ; pin

of sort Connection, where the pjs are either local port names
or have the form a!p for a the relative name of an actor. Such a connection connects the output port po to
all the input ports pi1 , . . . , pin . Since connections appear in configurations, and are not messages, they are
also terms of sort ObjectConfiguration:

sort Connection .

op _==>_ : EPortId EPortIdSet -> Connection [ctor] .

subsort Connection < ObjectConfiguration .

sort EPortId .

op _!_ : ActorID PortId -> EPortId [ctor] .

sort EPortIdSet . subsort EPortId < EPortIdSet .

op noPort : -> EPortIdSet [ctor] .

op _;_ : EPortIdSet EPortIdSet -> EPortIdSet [ctor assoc comm id: noPort] .

A multiple input port and its connection are transformed to a set of input ports with duplicated con-
nections, whose port names are annotated by the name of their source ports as explained in [22].

4.1.4. The Global Event Queue
The global event queue is represented by an object

< global : EventQueue | eventQueue : event queue >

where event queue is an ::-separated list, ordered according to time until firing, of terms of the form

set of events ; time to fire ; microstep

where the set of events is a set of events, with each event characterized by the “global port name” where
the generated event should be output and the corresponding value, time to fire denotes the time until the
events are supposed to fire, and microstep is the additional “microstep” until the event fires:

sort Event .

op event : EPortId Value -> Event [ctor] .

sort Events . subsort Event < Events .

op noEvent : -> Events [ctor] .

op __ : Events Events -> Events [ctor assoc comm id: noEvent] .

sort TimedEvent .

op _;_;_ : Events Time Nat -> TimedEvent [ctor] .

sort EventQueue . subsort TimedEvent < EventQueue .

op nil : -> EventQueue [ctor] .

op _::_ : EventQueue EventQueue -> EventQueue [ctor assoc id: nil] .

15

4.1.5. Example: Representing the Flat Traffic Light Model
Consider the flat non-fault-tolerant traffic light system given in Section 3.7. The Real-Time Maude

representation of the TimedDelay2 delay actor in the initial state is then

< ’TimedDelay2 : Delay | parameters : < ’delay : Parameter | value : # 1.0 >,

ports : < ’input : InPort | value : # 0, status : absent >

< ’output : OutPort | value : # 0, status : absent > >

Likewise, the FSM actor CarLight is represented as the term8

< ’CarLight : FSM-Actor | initState : ’Cinit, currState : ’Cinit,

parameters : < ’count : Parameter | value : # 1 >,

ports : < ’Sec : InPort | value : # 0, status : absent >

< ’Pgo : OutPort | value : # 0, status : absent >

...,

transitions :

(’Cinit --> ’Cred

{guard: (# true)

output: (’Cred |-> # 1) ; (’Cyel |-> # 0) ; (’Cgrn |-> # 0)

set: ’count |-> # 0}) ;

(’Cred --> ’Cred

{guard: (isPresent(’Sec) && (’count lessThan # 2))

output: emptyMap

set: ’count |-> (’count + # 1)}) ; ... >

The connection from the output port output of the Clock actor to the input port Sec of CarLight and
the input port Sec of PedestrianLight is represented by the term

(’Clock ! ’output) ==> (’PedestrianLight ! ’Sec) ; (’CarLight ! ’Sec)

The entire state thus consists of two FSM actor objects, ten connections, two delay objects, five set
variable objects, and the global event queue object.

4.2. Specifying the Behavior of Flat DE Models
The behavior of Ptolemy DE models can be summarized as repeatedly performing the following actions:

• Advance time until the time when the first event(s) in the event queue should fire.

• Then an iteration of the system is performed. That is,

1. The events that are supposed to fire are fed to the corresponding output ports; the status of all
other ports is set to unknown.

2. (Fire) Then the fixed point of all ports is computed by gradually increasing the knowledge about
the presence/absence of inputs to and output from ports until a fixed-point is reached.

3. (Postfire) Finally, the actors with inputs or scheduled events are executed; states are changed
and new events are generated and inserted into the global event queue.

The following tick rule advances time until the time when the first events in the event queue are scheduled;
that is, until the time-to-fire of the first events in the event queue is 0 (we first declare all the variables used
in this section):

8To save space, some terms are replaced by ‘...’

16

var CF : Configuration . vars NECF NECF’ : NEConfiguration . vars OBJ OBJECT : Object .

vars SYSTEM OBJECTS REST PORTS PORTS2 PARAMS : ObjectConfiguration . vars O O’ : Oid .

vars P P : PortId . vars EPIS EPIS’ : EPortIdSet . var PS : PortStatus .

var VI : VarId . vars V V1 V2 TV : Value . vars E TG : Exp .

var EVTS : Events . vars STATE STATE’ : Location . var QUEUE : EventQueue .

var EH : EventHistory . var T T’ : Time . var NZT : NzTime .

var N : Nat . var NZ : NzNat . var TRANSSET : TransitionSet .

var BODY : TransBody . vars OL AL : AssignMap .

rl [tick] :

{SYSTEM < global : EventQueue | queue : (EVTS ; NZT ; N) :: QUEUE >}

=>

{delta(SYSTEM, NZT)

< global : EventQueue | queue : (EVTS ; 0 ; N) :: delta(QUEUE, NZT) >}

in time NZT .

In this rule, the first element in the event queue has non-zero delay NZT. Time is advanced by this amount
NZT, and as a consequence, the (first component of the) event timer goes to zero. In addition, the function
delta, that specifies the effect of time elapse, is applied to all the other objects and connections (denoted
by SYSTEM) in the system. A function with the same name is also applied to the other elements in the event
queue, where it decreases the remaining time of each event set by the elapsed time NZT (x monus y equals
max(0, x− y)):

op delta : EventQueue Time -> EventQueue .

eq delta((EVTS ; T ; N) :: QUEUE, T’) = (EVTS ; T monus T’ ; N) :: delta(QUEUE, T’) .

eq delta(nil, T) = nil .

The function delta defines the effect of time elapse on configurations as follows. Time only affects the inter-
nal state of TimeActor objects (CurrentTime and TimedPlotter), that have an internal “clock” attribute
currentTime, by increasing the value of currentTime according to the elapsed time. Time elapse does not
affect other actors and connections:

op delta : Configuration Time -> Configuration .

eq delta(< O : TimeActor | currentTime : T > REST, T’)

= < O : TimeActor | currentTime : T + T’ > delta(REST, T’) .

eq delta(CF, T) = CF [owise] .

The next rule is a “microstep tick rule” that advances “time” with some microsteps if needed to enable
the first events in the event queue:

rl [shortTick] :

{SYSTEM < global : EventQueue | queue : (EVTS ; 0 ; NZ) :: QUEUE >}

=>

{SYSTEM < global : EventQueue | queue : (EVTS ; 0 ; 0) :: QUEUE >} .

Finally, when the remaining time and microsteps of the first events in the event queue are both zero, an
iteration of the system can be performed:

rl [executeStep] :

{SYSTEM < global : EventQueue | queue : (EVTS ; 0 ; 0) :: QUEUE >}

=>

{< global : EventQueue | queue : QUEUE >

postfire(portFixPoints(addEventsToPorts(EVTS, clearPorts(SYSTEM))))} .

The function clearPorts starts the execution of an iteration by clearing all ports; that is, it sets the status
of each port in the system to unknown. The operator addEventsToPorts inserts the events scheduled to fire

17

into the corresponding output ports. The portFixPoints function then finds the fixed points for all the
ports (this function corresponds to the fire action in Ptolemy), and postfire “executes” the steps on the
computed port fixed-points by changing the states of the objects and generating new events and inserting
them into the global event queue.

It is important to notice that these functions are declared to be partial functions. Therefore, a (sub)term
containing any of these function symbols will only have a kind, but not a sort. Since the equations
defining these functions only apply to terms of sort Configuration and its subsorts (NEConfiguration,
ObjectConfiguration, and so on), this ensures that clearPorts has been computed before addEventsToPorts
is computed, which again must happen before portFixPoints is computed, and so on.

ops clearPorts portFixPoints postfire : Configuration ~> Configuration .

To completely define the behavior of the actors, we must define the functions clearPorts, portFixPoints,
postfire, and delta on the different objects in the system.

4.2.1. Clearing Ports
The clearPorts function distributes to each actor object in the state, and then clears all the ports of

each actor, that is, sets the status to unknown (notice, as mentioned above, that the equations only apply
to terms of sort Configuration):

eq clearPorts(OBJ CF) = clearPorts(OBJ) clearPorts(CF) .

eq clearPorts(< O : Actor | ports : PORTS >) = < O : Actor | ports : clearPorts(PORTS) > .

eq clearPorts(< P : Port | status : PS > PORTS) = < P : Port | status : unknown > clearPorts(PORTS) .

eq clearPorts(CF) = CF [owise] .

4.2.2. Computing the Fixed-Point for Ports
The idea behind the definition of the function portFixPoints, that computes the fixed-point described

in Figure 1 for the values of all the ports, is simple. The state has the form portFixPoints(objects and
connections), where initially, the only port information are the events scheduled for this iteration. For each
possible case when the status of an unknown port can be determined to be either present or absent, there
is an equation

eq portFixPoints(< O : ... | ports : < P : Port | status : unknown > PORTS, ... >

connections and other objects) =

portFixPoints(< O : ... | ports : < P : Port | status : present , value : ... > PORTS, ... >

connections and other objects) .

(and similarly for deciding that input/output will be absent). The fixed-point is reached when no such
equation can be applied. Then, the portFixPoints operator is removed by using the owise construct of
Real-Time Maude:

eq portFixPoints(OBJECTS) = OBJECTS [owise] .

We first define the general cases of portFixPoints that apply to any Actor instance. The following
equation propagates port status from a “known” output port to a connecting unknown input port. The
present/absent status (and possibly the value) of the output port P of actor O is propagated to the input
port P’ of the actor O’ through the connection (O ! P) ==> ((O’ ! P’) ; EPIS):

ceq portFixPoints(< O : Actor | ports : < P : OutPort | status : PS , value : V > PORTS >

((O ! P) ==> ((O’ ! P’) ; EPIS))

< O’ : Actor | ports : < P’ : InPort | status : unknown > PORTS2 >

REST)

= portFixPoints(< O : Actor | >

((O ! P) ==> ((O’ ! P’) ; EPIS))

18

< O’ : Actor | ports : < P’ : InPort | status : PS, value : V > PORTS2 >

REST)

if PS =/= unknown .

If all input ports of an actor are absent, then the actor should not generate any output, unless it has a
scheduled event from the event queue. In this case, the status of each output port of the actor is set to
absent:

ceq portFixPoints(< O : Actor | ports : < P : OutPort | status : unknown > PORTS > REST)

= portFixPoints(< O : Actor | ports : < P : OutPort | status : absent >

setUnknownOutPortsAbsent(PORTS) > REST)

if allInputPortsAbsent(PORTS) .

op allInputPortsAbsent : Configuration -> Bool .

eq allInputPortsAbsent(< P : InPort | status : PS > PORTS)

= (PS == absent) and allInputPortsAbsent(PORTS) .

eq allInputPortsAbsent(PORTS) = true [owise] .

op setUnknownOutPortsAbsent : Configuration ~> Configuration .

eq setUnknownOutPortsAbsent(< P : OutPort | status : unknown > PORTS)

= < P : OutPort | status : absent > setUnknownOutPortsAbsent(PORTS) .

eq setUnknownOutPortsAbsent(PORTS) = PORTS [owise] .

It is also possible that some actor has an isolated input port that has no incoming connection. Obviously,
the input port has no value; i.e., its status should be absent:

ceq portFixPoints(< O : Actor | ports : < P : InPort | status : unknown > PORTS > REST)

= portFixPoints(< O : Actor | ports : < P : InPort | status : absent > PORTS > REST)

if not connectedInPort(O ! P, REST) .

op connectedInPort : EPortId Configuration -> Bool .

eq connectedInPort(O ! P, (O’ ! P’ ==> (O ! P) ; EPIS) < O’ : Actor | > CF) = true .

eq connectedInPort(O ! P, CF) = false [owise] .

The portFixPoints function must then be defined for each kind of actor to decide whether the actor
produces any output in a given port. For example, the timed delay actor does not produce any output in
this iteration as a result of receiving input. Therefore, if its status is unknown (that is, the delay actor did
not schedule an event for this iteration), its output port should be set to absent:

eq portFixPoints(< O : Delay | ports : < P : OutPort | status : unknown > PORTS > REST)

= portFixPoints(< O : Delay | ports : < P : OutPort | status : absent > PORTS > REST) .

Actors, such as variable delay, clock actors, timers, etc., that generate “delayed” events as a result of
receiving input, have the same definition of portFixPoints.

Other actors generate immediate output when receiving input. For example, when the current time actor
gets an input, it outputs the current model time, given by its currentTime attribute. Furthermore, when
its lone input port is absent, its lone output port is also set to absent:

ceq portFixPoints(< O : CurrentTime | currentTime : T,

ports : < P : InPort | status : PS >

< P’ : OutPort | status : unknown > >

REST)

= portFixPoints(< O : CurrentTime | ports : < P : InPort | >

< P’ : OutPort | status : PS , value : # T >

REST)

if PS =/= unknown .

19

Likewise, when a pulse actor gets input through its trigger port, it should generate immediate output
through its output port. Then an output value is produced as described in Section 3.2, which is done by the
function getValue:

eq portFixPoints(< O : Pulse | index : N,

parameters : < ’indexes : Parameter | value : V1 >

< ’values : Parameter | value : V2 > PARAMS,

ports : < ’trigger : InPort | status : present >

< ’output : OutPort | status : unknown > PORTS >

REST)

= portFixPoints(< O : Pulse | ports : < ’trigger : InPort | >

< ’output : OutPort | status : present,

value : getValue(V1, V2, N) >

PORTS >

REST) .

For FSM actors, the portFixPoints function must check whether a transition is enabled by evaluating
the guard expressions. In the following equation, a transition from the current state STATE is enabled,
there is some input to the actor (through input port P’), and some output ports have status unknown.
The function updateOutPorts then updates the status and the values of the output ports according to the
current state and input:

ceq portFixPoints(< O : FSM-Actor | ports : < P’ : InPort | status : present >

< P : OutPort | status : unknown > PORTS,

currState : STATE, parameters : PARAMS,

transitions : (STATE --> STATE’ {guard: TG output: OL set: AL}) ;

TRANSSET >

REST)

=

portFixPoints(< O : FSM-Actor | ports : < P’ : InPort | >

updateOutPorts(PARAMS, OL, < P : OutPort | > PORTS) >

REST)

if transApplicable(< P’ : InPort | > < P : OutPort | > PORTS, PARAMS, TG) .

The function transApplicable holds if the guard evaluates to true, for the current values of the local
state variables (as given by the parameters objects) and current knowledge of port states and values. The
definition of transApplicable is straight-forward and is not shown here.

The updateOutPorts function is defined as follows. Each output port is assigned a value of the corre-
sponding output action of the given transition, and all remaining output ports are set to be absent in the
end of the update process:

op updateOutPorts : Configuration AssignMap Configuration -> Configuration .

eq updateOutPorts(PARAMS, (VI |-> V ; OL), < VI : OutPort | status : unknown > PORTS)

= < VI : OutPort | status : present, value : V > updateOutPorts(PARAMS, OL, PORTS) .

eq updateOutPorts(PARAMS, OL, PORTS) = setUnknownOutPortsAbsent(PORTS) [owise] .

Other equations for portFixPoints on FSM actors specify the cases when no transition is enabled. In
these cases, every output ports should be set to absent :

ceq portFixPoints(< O : FSM-Actor | ports : < P : InPort | status : present > PORTS,

currState : STATE, parameters : PARAMS, transitions : TRANSSET >

REST)

=

portFixPoints(< O : FSM-Actor | ports : < P : InPort | > setUnknownOutPortsAbsent(PORTS) >

REST)

if allGuardsFalse(STATE, < P : InPort | > PORTS, PARAMS, TRANSSET) .

20

The function setUnknownOutPortsAbsent sets the status of each output port with status unknown to
absent, and the function allGuardsFalse checks whether the guard in each transition from the given state
evaluates to false in the current environment.

The equations defining the portFixPoints function are terminating, since in each application of such
an equation (except for the ‘owise’ equation), the status of a port goes from unknown to either present or
absent. Confluence of the equations follows from the fact that Ptolemy II DE models are assumed to be
deterministic and that they have a well-defined fixed-point semantics [19].

4.2.3. Postfire
The postfire function updates internal states and generates future events that are inserted into the

event queue. The postfire function distributes over the actor objects in the configuration:

eq postfire(OBJECT NECF) = postfire(OBJECT) postfire(NECF) .

eq postfire(CF) = CF [owise] .

The second equation defines the “default” case when postfire does not change the state of an actor
and does not generate a new event. Therefore, we only need to define the cases where either the internal
state of an actor should be changed as a result of the firing, and/or when when the actor generates a future
event that should be inserted into the event queue. For example, the current time actor does not have a
state that is changed, except by the passage of time, and does not schedule later events, so that we do not
need to specify an equation defining postfire for current time objects.

Sometimes, postfire generates a new event with value v that should fire at time t and microstep n from
the current time. In these cases, postfire puts the new event into the event queue, and the corresponding
equation has the form

eq postfire(< O : C | ports : < P : OutPort | > ..., ... >)

< global : EventQueue | queue : QUEUE >

=

< O : C | ... >

< global : EventQueue | queue : addEvent(event(O ! P, v), t, n, QUEUE) > .

where the function addEvent inserts the new event (with value v that should fire at time t and microstep n
from the current time) in the correct place in the event queue.

Delay. If a time delay actor has input in its ’input port, then it generates an event with delay equal to the
current value of the ’delay parameter. If this delay is 0.0, the microstep is 1, otherwise the microstep is 0:

eq postfire(< O : Delay | ports : < ’input : InPort | status : present, value : V >

< ’output : OutPort | >,

parameters : < ’delay : Parameter | value : TV > PARAMS >)

< global : EventQueue | queue : QUEUE >

=

< O : Delay | >)

< global : EventQueue | queue : addEvent(event(O ! ’output, V), toTime(TV),

if toTime(TV) == 0 then 1 else 0 fi, QUEUE) > .

The variable delay actor has an extra delay port to specify time delay. If the delay port is absent, the
behavior is the same as the delay actor. However, if the delay port has some value, the value of the port is
used instead of the ’delay parameter:

eq postfire(< O : VariableDelay | ports : < ’input : InPort | status : present, value : V >

< ’delay : InPort | status : present, value : TV >

< ’output : OutPort | > PORTS >)

= < O : VariableDelay | >

< global : EventQueue | queue : addEvent(event(O ! ’output, V), toTime(TV),

if toTime(TV) == 0 then 1 else 0 fi, QUEUE) > .

21

Clock. When a clock actor produces output, the postfire function should schedule the next event, and
update the index variable (in the second equation a new “cycle” is started):

ceq postfire(< O : Clock | ports : < P : OutPort | status : present > PORTS,

parameters : < ’offsets : Parameter | value : V1 >

< ’values : Parameter | value : V2 > PARAMS,

index : N >)

< global : EventQueue | queue : QUEUE >

=

< O : Clock | index : N + 1 >

< global : EventQueue | queue : addEvent(event(O ! P, V2(#(s N))), TIME-TO-FIRE,

if TIME-TO-FIRE == 0 then 1 else 0 fi, QUEUE) >

if TIME-TO-FIRE := toTime((V1(#(s N))) - (V1(# N)))

/\ ((# N + # 1) lessThan (V1 .. ’length(()))) == # true .

If A is an array and n a number, then the expression A(# n) denotes value of the nth element of A, and
A ..’length(()) denotes the length of A (see [22] for the definition of these functions). A similar equation
defines postfire when a new “cycle” is started; that is, when N + 1 equals the length of the offsets array.

Timer. If a timer actor received input at its input port, it generates an event with value equal to the
current value of the output parameter. The event is scheduled to fire in the time given by the value of the
input port:

eq postfire(< O : Timer | parameters : < ’output : Parameter | value : V > PARAMS,

ports : < ’input : InPort | status : present , value : TV > PORTS >)

< global : EventQueue | queue : QUEUE >

=

< O : Timer | >

< global : EventQueue | queue : addEvent(event(O ! ’output, V), toTime(TV),

if toTime(TV) == 0 then 1 else 0 fi, QUEUE) > .

Timed Plotter. At the end of an iteration, the timed plotter records any input through its multi-input port
by adding triple source: channel time: current time value: value of input for each such input to
its eventHistory attribute. This job is done by the auxiliary function genEventHistory which traverses
the instances of ’input ports and generates a “history triple” for those ports which had input:

eq postfire(< O : TimedPlotter | currentTime : T, eventHistory : EH, ports : PORTS >)

= < O : TimedPlotter | eventHistory : EH ++ genEventHistory(T, PORTS) >) .

op genEventHistory : Time Configuration ~> EventHistory .

eq genEventHistory(T, < ’input # (O ! P) : InPort | status : present, value : V > PORTS)

= (source: O ! P time: T value: V) ++ genEventHistory(T, PORTS) .

eq genEventHistory(T, PORTS) = emptyHistory [owise] .

FSM Actors. An FSM actor does not generate future events, but postfire updates the internal state
(location and variables/parameters) of the actor if it has gotten input and one of its transitions was enabled:

ceq postfire(< O : FSM-Actor | ports : < P : InPort | status : present > PORTS,

parameters : PARAMS, currState : STATE,

transitions : STATE --> STATE’ {guard: TG output: OL set: AL} ;

TRANSSET >)

=

< O : FSM-Actor | parameters : updateParam(PARAMS, AL, PARAMS), currState : STATE’ >)

if transApplicable(< P : InPort | > PORTS, PARAMS, TG) .

op updateParam : Configuration AssignMap Configuration -> Configuration .

22

eq updateParam(CF, (VI |-> E ; AL), < VI : Parameter | > PARAMS)

= < VI : Parameter | value : [[E]] CF > updateParam(CF, AL, PARAMS) .

eq updateParam(CF, AL, PARAMS) = PARAMS [owise] .

Here, [[E]] CF gives the value of the expression E when evaluated in the environment CF. Notice that
the “old” environment is used to compute the value of each expression.

4.3. Defining Initial States
The initial state is defined as the term:

{init(< global : EventQueue | queue : nil > actors) connections }

where init adds the initial events of the system to the global event queue. In our flat subset, only single
event (not shown) and clock actors generate such initial events:

eq init(< O : Clock | parameters : < ’value : Parameter | value : V1 >

< ’offsets : Parameter | value : V2 > PARAMS >

< global : EventQueue | queue : QUEUE > REST)

=

< O : Clock | >

init(< global : EventQueue | queue : addEvent(event(O ! ’output, V1(# 0)), toTime(V2(# 0)), 0, QUEUE) >

REST) .

eq init(CF) = CF [owise] .

5. Real-Time Maude Semantics for Hierarchical DE Models

We define the Real-Time Maude semantics for transparent hierarchical DE models by extending our
semantics for flat models to composite actors and modal models, and by making some changes to the flat
semantics as described below. Our representation preserves the hierarchical structure of a Ptolemy II model;
therefore such models and their Real-Time Maude counterparts are essentially isomorphic, so that we can
easily reconstruct the original Ptolemy II models to provide graphical counter-examples.

Some of the difficulties involved in extending the semantics to the hierarchical case include:

• The event management is different. DE models have a global event queue, but events could be generated
at any level in the hierarchy and/or must be fed to actors deep down in the hierarchy.

• Computing fixed-points for hierarchical models is much harder than in the flat case. Naive approaches
easily fall into infinite loops or unnecessarily complex semantics. In addition, the fixed-point compu-
tation should be finished only after all levels of fixed-point computation are completed.

• The semantics of modal models in the Ptolemy II documentation is somewhat unclear. There are
many subtle or implicit assumptions concerning the execution of modal models, such as the evaluation
order of inner actors, event generation in frozen actors, and handling input/output ports of modal
models. To clarify the meaning of modal models, we have proposed the semantics which is informally
described in Section 3 and is formally defined below.

5.1. Representing Hierarchical Actors
Composite actors are modeled as object instances of the class CompositeActor, which extends its su-

perclass Actor with one attribute, innerActors, which denotes the inner actor objects and connections of
the composite actor:

class CompositeActor | innerActors : Configuration . subclass CompositeActor < Actor .

23

We also add the following new class AtomicActor to distinguish the atomic actors from composite actors,
and declare each atomic actor class to be a subclass of AtomicActor.

class AtomicActor . subclass AtomicActor < Actor .

Each actor can be uniquely identified by its global actor identifier, which is a list o1 . o2 on of
object names, where o1 is the name a top-level actor, and oi+1 is the name of an inner actor of the composite
actor with global actor identifier o1 oi.

We represent modal models as composite actors according to the frozen-composite-actor semantics for
modal models described in Section 3. The class ModalModel has an additional attribute controller pointing
to the controller FSM in innerActors, and the additional refinementSet attribute mapping each state in
the modal model to its refinement:

class ModalModel | controller : Oid, refinement : RefinementSet .

subclass ModalModel < CompositeActor .

In addition, the definition of the basic Actor class adds an attribute status whose value is either enabled
or disabled, depending on whether the actor is disabled as a result of being contained in a refinement of a
“frozen” state in a modal model. Any equation generating a value at outports or changing parameters, such
as those defining portFixPoints and postfire, only apply to objects whose status is enabled. Other
equations, such as those defining clearPorts, also apply to disabled actors.

5.2. Extracting and Adding Events to the Event Queue
In the flat setting, each actor is at the same hierarchical level as the global EventQueue object. Each

actor therefore has direct access to the event queue, so that at the start of an iteration, the scheduled
events could be directly inserted into the corresponding actor ports (by the function addEventsToPorts),
and actors could add generated events directly into the global event queue (in postfire).

In the hierarchical case, an actor that receives or generates an event from/to the global event queue can
be located deep down in the actor hierarchy. Events communicated between the actors and the event queue
may therefore cross hierarchical boundaries. We have modeled this “traveling” of events by “method calls”
or “message passing.” For example, inserting an event into the output port p of some actor with global actor
identifier g corresponds to generating the message active-evt(event(g ! p, v)). Likewise, an event gener-
ated by an actor is “sent” to the event queue as a message of the form schedule-evt(event, time,microstep):

msg schedule-evt : Event Time Nat -> Msg .

msg active-evt : Event -> Msg .

For example, when an actor generates an event, it creates an schedule-evt “message” (we again first
declare the variables used in this section):

vars O O’ CO : Oid . vars CF CF’ : Configuration . var MSGS : MsgConfiguration .

vars SYSTEM OBJECTS REST REST2 PORTS PORTS2 PARAMS : ObjectConfiguration .

var AI : ActorID . var NAI : NEActorID . var ST : ActorStatus .

vars P P’ : PortId . var PS : PortStatus . vars EPIS EPIS’ : EPortIdSet .

var REFS : RefinementSet . vars STATE STATE’ : Location . vars V TV : Value.

var N : Nat . var EVENT : Event . var EVTS : Events .

var QUEUE : EventQueue . var T : Time .

eq postfire(< O : Delay | status : enabled,

parameters : < ’delay : Parameter | value : TV > PARAMS,

ports : < ’input : InPort | status : present, value : V >

< ’output : OutPort | > PORTS >)

= schedule-evt(event(O ! ’output, V), toTime(TV), if toTime(TV) == 0 then 1 else 0 fi)

< O : Delay | > .

24

Such an event is propagated towards the top of the actor hierarchy by the following equation, which moves
the schedule-evt message inside innerActors of a composite actor one level up:

eq < O : CompositeActor | innerActors : CF schedule-evt(event(AI ! P, V), T, N) >

= < O : CompositeActor | innerActors : CF > schedule-evt(event((O . AI) ! P, V), T, N) .

When the schedule-evt request has reached the top of the hierarchy, it is added to the global event queue:

eq < global : EventQueue | queue : QUEUE > schedule-evt(EVENT, T, N)

= < global : EventQueue | queue : addEvent(EVENT, T, N, QUEUE) > .

The propagation of active-evts from the event queue to some inner actor is explained below.
The rewrite rule executeStep that models an iteration of the system is modified compared to the flat

case, so that for each event event(globalActorId ! portId, v) scheduled for this iteration (i.e., included
in EVTS below), a “message” active-evt(event(globalActorId ! portId, v)) is added to the state; the
function releaseEvt generates this message set from a set of events:

rl [executeStep] :

{SYSTEM < global : EventQueue | queue : (EVTS ; 0 ; 0) :: QUEUE >}

=>

{< global : EventQueue | queue : QUEUE >

postfire(portFixPoints(releaseEvt (EVTS) clearPorts(SYSTEM)))} .

Since messages are not terms of sort ObjectConfiguration, subtle use of variables of the subsort Object-
Configuration in equations defining portFixPoints ensure that all events are delivered to the actors before
portFixPoints is computed.

5.3. Defining clearPorts, portFixPoints, and postfire for Hierarchical Models
For atomic actors, clearPorts should just set the status of each port of the actor to unknown, as before.

For composite actors, it should also propagate to the inner actors. To ensure that the appropriate equation
applies to an actor, we must modify the definition of clearPorts for atomic actors to apply only to objects
of class AtomicActor:

eq clearPorts(< O : AtomicActor | ports : PORTS >) = < O : AtomicActor | ports : clearPorts(PORTS) > .

eq clearPorts(< O : CompositeActor | innerActors : CF, ports : PORTS >)

= < O : CompositeActor | innerActors : clearPorts (CF), ports : clearPorts(PORTS) > .

The postfire function is almost unchanged for the “flat” actors (except for the difference in the propa-
gation of events to the event queue explained above); the only modification is to ensure that postFire is not
applied to disabled actors, since disabled actors should not change their states or generate new events. For
a composite actor, postfire just propagates to its inner actors. The condition ensures that this equation
is not applied to modal models:9

ceq postfire(< O : CompositeActor | status : ST, innerActors : CF >)

= < O : CompositeActor | innerActors : if ST == enabled then postfire (CF) else CF fi >)

if class(< O : CompositeActor | >) == CompositeActor .

The extension of the portFixPoints function to the hierarchical case is more subtle. The portFixPoints
function should distribute to the submodels of composite actors to compute the fixed points of these sub-
systems. However, an equation of the form

9The function class returns the smallest class of a given object, so the condition in the equation does not hold if the object
O is an instance of the subclass ModalModel of CompositeActor.

25

eq portFixPoints(< O : CompositeActor | innerActors : OBJECTS, ... > REST)

= portFixPoints(< O : CompositeActor | innerActors : portFixPoints(OBJECTS), ... > REST) .

would be applicable again when the inner portFixPoints function disappears, leading to nontermination
(and non-applicability of the owise equation defining the end of the fixed-point computation). The problem
with the above equation is that portFixPoints is applied to inner actors even though they may already
have reached their fixed points. To avoid this situation, we execute portFixPoints for inner actors only
if some inner actors have not yet reached a fixed-point. This can be easily accomplished since actors are
activated in DE models only if input ports of the actors receive some value either from the event queue or
from the other actors by connections.

We therefore start the fixed-point computation of inner actors in the portFixPoints function of com-
posite actors in the following cases:

1. Some events from the event queue are passed to some inner actors.
2. An input port of a composite actor is connected to some inner actors and the status of the port is

decided (i.e., either received some value or became absent).

In case 1, when released events are propagated to some inner actor of a composite actor, the portFixPoints
computation of those inner actors begins. The following equations describe the propagation of active-evts
from the event queue to inner actors. If there are some events toward an inner actor of a composite actor,
then all such events are passed to the inner actors and portFixPoints of the inner actors is started. This
equation is the only equation defined on the sort Configuration, so that it is executed before the other
portFixpoints equations are applied:

ceq portFixPoints(active-evt(event((O . AI) ! P, V))

< O : CompositeActor | innerActors : OBJECTS > CF)

= portFixPoints(< O : CompositeActor | innerActors : portFixPoints (MSGS OBJECTS) > CF’)

if fr(MSGS, CF’) := filterMsg(O, CF, active-evt(event(AI ! P, V))) .

The function filterMsg separates the events toward inside from the others, and returns a constructor
fr(Events,Conf) which is a pair of the desired events and the other configuration:

op filterMsg : Oid Configuration MsgConfiguration ~> FilterResult .

eq filterMsg(O, active-evt(event((O . NAI) ! P, V)) CF, MSGS)

= filterMsg(O, CF, active-evt(event(NAI ! P, V)) MSGS) .

eq filterMsg(O, CF, MSGS) = fr(MSGS, CF) [owise] .

In case 2, we must define the portFixPoints function for the port-propagation of composite actors. An
input to a composite actor will lead to an input to one of its subactors, and an output at a subactor will
lead to an output from the containing composite actor. (We use the special name ‘parent’ in port names
to denote the containing actor of an actor.) When a composite actor passes a value (or the knowledge that
input will be absent) to inner actors, if the inner fixed-point computation has not started yet or is already
finished, then portFixPoints must again be called to (re-) compute the fixed-point of the inner diagram:

ceq portFixPoints(

< O : CompositeActor | status : enabled ,

ports : < P : InPort | status : PS, value : V > PORTS,

innerActors :

(parent ! P) ==> (O’ ! P’ ; EPIS)

< O’ : Actor | ports : < P’ : InPort | status : unknown > PORTS2 > REST2 >

REST)

=

portFixPoints(

< O : CompositeActor | innerActors : portFixPoints(*** (re-) start the inner fixed-point

(parent ! P) ==> (O’ ! P’ ; EPIS)

< O’ : Actor | ports : < P’ : InPort | status : PS , value : V > PORTS2 >

26

REST2) >

REST)

if PS =/= unknown .

Of course, a composite actor can pass an updated port status/value to its inner actors also when those inner
actors are already computing portFixPoints; that case is modeled by an equation that is very similar to
the above equation and is not shown.

Likewise, an inner actor can propagate the status of output ports to the containing actor. In this case,
we only consider when the inner fixed-point is already finished, because in Ptolemy II an inner actor has a
higher priority than a parent actor in the evaluation order:

ceq portFixPoints(

< O : CompositeActor |

ports : < P : OutPort | status : unknown > PORTS,

innerActors :

(O’ ! P’) ==> (parent ! P ; EPIS)

< O’ : Actor | status : enabled ,

ports : < P’ : OutPort | status : PS, value : V > PORTS2 > REST2 >

REST)

=

portFixPoints(

< O : CompositeActor |

ports : < P : OutPort | status : PS, value : V > PORTS,

innerActors : (O’ ! P’) ==> (parent ! P ; EPIS)

< O’ : Actor | ports : < P’ : OutPort | > PORTS2 > REST2 >

REST)

if PS =/= unknown .

Similarly, if some output port of a composite actor is directly connected to its input port, the status
(and the value if the status is present) of the input port is transferred to the output port after the inner
fixed-point is finished:

ceq portFixPoints(

< O : CompositeActor | status : enabled ,

ports : < P : InPort | status : PS, value : V >

< P’ : OutPort | status : unknown > PORTS,

innerActors : (parent ! P) ==> (parent ! P’ ; EPIS) REST2 >

REST)

=

portFixPoints(

< O : CompositeActor | ports : < P : InPort | >

< P’ : OutPort | status : PS, value : V > PORTS >

REST)

if PS =/= unknown .

All input and output ports of inner actors in disabled composite actors become absent, since there is no
computation for disabled actors. The setAllPortsAbsent function makes the status of every port absent,
including inner actors of composite actors.

eq portFixPoints(

< O : CompositeActor |

status : disabled ,

innerActors : < O’ : Actor | ports : < P : Port | status : unknown > PORTS > REST2 >

REST)

=

portFixPoints(

< O : CompositeActor | innerActors : setAllPortsAbsent(< O’ : Actor | > REST2) > REST) .

27

We also have equations setting the output ports of composite actors to absent if there are no connections
into these ports.

An owise equation is again used to end the fixed-point computation when no equation adding new
information about the ports can be applied. However, to end the fixed-point computation of a (sub)system,
the fixed-point computations of the subsystems of composite actors must have finished. Therefore, this
owise equation should only be applied when there is no portFixPoints operator in the innerActors of the
CompositeActors in the system. Since portFixPoints is declared as a partial function, no object with an
occurrence of the portFixPoints operator somewhere in its inner actors (or in some subactor of an inner
actor) will be a term of sort Object. That is, actors of sort Object do not contain portFixPoints:

ceq portFixPoints(OBJECTS) = OBJECTS [owise] .

5.3.1. Modal Models
Most of the semantics for modal models is borrowed from the semantics of composite actors, except for

frozen actors, coupled ports, and the evaluation order between the controller and refinements. For modal
models, postfire also sets the status attribute of the inner actors according to the current state of the
controller to freeze all refinement actors except the refinement of the current state:

ceq postfire(

< O : ModalModel | status : enabled, controller : CO, refinement : REFS, innerActors : CF >)

=

< O : ModalModel | innerActors : (< CO : FSM-Actor | > setStateRefinement(STATE, REFS, OBJECTS)) >

if < CO : FSM-Actor | currStatus : STATE > OBJECTS := postfire(CF) .

The function setStateRefinement disables all refinements except the refinement of the current state.

op setStateRefinement : Location RefinementSet Configuration -> Configuration .

eq setStateRefinement(STATE, refine-state(STATE’, O) REFS, < O : Actor | status : ST > REST)

= < O : Actor | status : if STATE == STATE’ then enabled else disabled fi >

setStateRefinement(STATE, REFS, REST) .

eq setStateRefinement(STATE, empty, REST) = REST .

Notice that, because of the way the other equations are defined, it is not necessary to set the status flag
to disabled in subactors of frozen actors.

If the controller depends on the result of portFixpoints of some refinement actors, then the result must
be transferred through some coupled input port of the controller actor. Hence the evaluation order between
the controller and refinements is automatically treated in our representation. The only part not yet covered
is to handle coupled input/output ports in the controller FSM actor of a modal model. In our representation,
the coupled input/output ports have the same name, and the value of the input port will be copied only if
the coupled output port is absent :

eq portFixPoints(

< O : ModalModel | status : enabled , controller : CO,

innerActors :

< CO : FSM-Actor | status : enabled ,

ports : < P : InPort | status : present , value : V >

< P : OutPort | status : absent > PORTS >

REST2 >

REST)

=

portFixPoints(

< O : ModalModel | innerActors : portFixPoints(

< CO : FSM-Actor |

ports : < P : InPort | >

< P : OutPort | status : present , value : V > PORTS >

28

REST2 >)

REST) .

The above equation can be only applied after the inner fixed-point computation triggered by the controller
FSM actor has been finished. Therefore, an output port copies a value from its coupled input port only if
no value is generated at the output port when the controller is computed.

However, because of the above equation, the absent status of coupled output ports should not be trans-
ferred to the parent until we can decide whether the associated coupled input port is absent or not. For this
reason we do not explicitly represent the connections between coupled output ports of the controller and
the output ports of the parent modal model. Instead, we define the following equations to propagate the
value of the coupled output ports:

eq portFixPoints(

< O : ModalModel | status : enabled , controller : CO,

ports : < P : OutPort | status : unknown > PORTS,

innerActors : < CO : FSM-Actor | ports :

< P : OutPort | status : present , value : V > PORTS2 >

OBJECTS >

REST)

=

portFixPoints(

< O : ModalModel | ports : < P : OutPort | status : present , value : V > PORTS >

REST) .

The absent status of a coupled output port is propagated only if the associated input port is also absent:

eq portFixPoints(

< O : ModalModel | status : enabled , controller : CO,

ports : < P : OutPort | status : unknown > PORTS,

innerActors :

< CO : FSM-Actor |

ports : < P : InPort | status : absent >

< P : OutPort | status : absent > PORTS2 >

OBJECTS >

REST)

=

portFixPoints(< O : ModalModel | ports : < P : OutPort | status : absent > PORTS > REST) .

6. Extending the Real-Time Maude Semantics to DE Models with Expressions

Ptolemy II provides a language to define algebraic expressions; such expressions are used to specify
the values of parameters, guards, and actions in state machines, and for the computations performed by
expression actors. The Ptolemy expression language is similar to expression languages in widely used
programming languages. An expression can include variables that refer to parameters and input ports.

When computing the value of an expression containing variables, we use the following values of the
variables:

• if the variable refers to an input port, we use the “current” value of the input port, after the status of
the port has been determined to be either present or absent ;

• if the variable refers to a parameter, we use the value of the parameter at the end of the previous
iteration of the system.

29

In hierarchical Ptolemy II models, the values of expressions in some actors cannot be easily computed
by a simple function such as computeValue(expr,PARAMS,PORTS), because the parameters referred to by
some variables may not be included in the actor, but in a composite actor that contains the actor. For that
reason, we may need to look at the entire hierarchy of the actor structure to compute expressions. Moreover,
the status of some input ports in the expression may be unknown, so that the computation may have to be
postponed until all input ports in the expression are present.

To resolve the above difficulties, we add a processor for each actor that computes expressions. Whenever
the value of an expression needs to be computed, the computation configuration of the expression, which
holds all the information for evaluating the given expression, is created in the processor. The value of the
expression is then computed inside the processor using the computation configuration, and every information
for the evaluation is sent from the outside to the processor. Basically, to evaluate an expression, we need
to decide all free variables in the expression. Hence, a computation configuration consists of an expression
and the assignment map (or variable environment) that contains the values of the free variables in the
expression. For each free variable in the variable environment, the corresponding value is transferred into
the environment when it is available. The value of a parameter computed at the previous step is transferred,
and the value of an input port is transferred when the status of the port becomes present.

We can then independently define the semantics of the Ptolemy expression language using a computation
configuration. Section 6.1 briefly introduces the syntax and the simple denotational semantics of the Ptolemy
expression language in rewriting logic. Section 6.2 extends our Real-Time Maude semantics of Ptolemy II
to models whose parameters, guards, and actions are generic Ptolemy II expressions.

6.1. The Ptolemy Expression Language and its Semantics
Ptolemy II expressions consist of constants, variables, and operators. A constant is a number, a Boolean

value, or a string. Variables are references to parameters or ports of actors, and may refer to parameters of
composite actors that contain the actors. Operators can be arithmetic (+, -, *, /, ^, %), bitwise (&, |, #, ~),
logical (&&, ||, !, &, |), shift (<<, >>, >>>), or conditional (condition ? exp1 : exp2).

The Ptolemy II expression language provides functional expressions. A functional expressions is either a
method call object .method(arg1 , . . . , argn) (where object is a special data “object” such as, e.g., an array) or
a general function call function name(arg1 , . . . , argn). A new (possibly recursive) function can be defined
by giving a definition of the form function(arg1:Type1, ..., argn:Typen) function body expression. In
addition, the expression language includes a set of built-in methods and functions, such as sin(), cos(),
etc.

The Ptolemy II expression language also supports composite data types such as arrays, records, and
matrices. Arrays are lists of expressions in curly brackets, e.g., {1, 2.0, "x"}. Records are lists of fields
where each field consists of a name and a value. For example, {a=1, b="foo"} is a record with two fields,
named a and b, with values 1 and "foo", respectively. A matrix data structure in Ptolemy II expression
language describes a usual n×m matrix.

6.1.1. The Real-Time Maude Representation of Ptolemy II Expressions
Our Real-Time Maude semantics supports the entire expression language described above. However, in

the following presentation, we explain only how we deal with constants, variables, the built-in operators
mentioned above, conditionals, and arrays.

In our representation, Ptolemy II expressions are terms of sort Exp. A value is an expression that cannot
be further evaluated; such values are represented as terms of the sort Value, which is a subsort of Exp.
Ptolemy variables are terms of sort VarId in our semantics. Constants have sort Value, and are represented
by the corresponding values in Real-Time Maude, prefixed with the # symbol. Numerical constants are
either rational numbers (which contain the integers) or fixed-point constants. Operators (unary, binary, and
conditional) are defined by Real-Time Maude operator declarations as follows:

ops -_ ~_ !_ : Exp -> Exp . --- negative, complements, negation

ops _+_ _-_ _*_ _/_ _%_ _^_ : Exp Exp -> Exp . --- numerical binary operators

...

op _?_:_ : Exp Exp Exp -> Exp [ctor prec 60] . --- the conditional operator

30

The algebraic semantics of each operator is defined as usual way. For example, the conditional expression
is defined as follows (we first declare the variables used in this section):

vars SYSTEM STABLEPORTS STABLEPARAMS STABLEACTORS : StableConfiguration .

vars OBJECTS REST PORTS PARAMS : ObjectConfiguration . var ENV : EnvMap .

var O : Oid . var AI : ActorID . var ECF : [Configuration] .

var EVTS : Events . var QUEUE : EventQueue . var N : Nat .

var P : PortId . var RI : ParamId . var VI : VarId .

var VIS : VarIdSet . var CI : ComputationID . vars V V’ : Value .

vars E E1 E2 E3 : Exp . var PE : ProperExp .

eq # true ? E1 : E2 = E1 .

eq # false ? E1 : E2 = E2 .

In addition, we define a sort ProperExp for the expressions that are not values. All expressions that can
be further evaluated are defined as ProperExp:

subsorts VarId < ProperExp < Exp --- variables

ops -_ ~_ !_ : ProperExp -> ProperExp . --- negative, complement, negation

ops _+_ _-_ _*_ _/_ _%_ _^_ : ProperExp Exp -> ProperExp . --- numerical binary operators

ops _+_ _-_ _*_ _/_ _%_ _^_ : Exp ProperExp -> ProperExp . --- numerical binary operators

...

6.1.2. Rewriting Semantics of Ptolemy II Expression Language
The semantics of the Ptolemy II expression language is defined on a computation configuration of an

expression. A computation configuration is either a pair of an expression and a variable environment that
holds all free variables in the expression, or the value of the evaluation result:

sorts ComputationConfig ConfigItem .

op result : Value -> ComputationConfig [ctor] .

op __ : ConfigItem ConfigItem -> ComputationConfig [ctor comm] .

op exp : Exp -> ConfigItem [ctor] .

op env : EnvMap -> ConfigItem [ctor] .

With the denotational style of the language semantics, the expression is evaluated when the values of all
free variables in the environment are decided:

op [[_]]_ : Exp EnvMap ~> Value .

ceq exp(E) env(ENV) = [[E]] ENV if allFreeVariableDecided(ENV) .

eq [[VI]] (VI <-| V ; ENV) = V .

eq [[E1 + E2]] ENV = [[E1]] ENV + [[E2]] ENV .

...

eq [[E1 ? E2 : E3]] ENV = if [[E1]] ENV == # true then [[E2]] ENV else [[E3]] ENV fi .

6.2. Real-Time Maude Semantics of Ptolemy II DE Models with Generic Expression
We extend the Actor class with an additional attribute computation to model the processor of an actor,

in which expressions are evaluated:

class Actor | ports : Configuration, parameters : Configuration,

status : ActorStatus, computation : Computation .

The sort Computation is either noComputation or a computation configuration tagged with an identifier.

sorts Computation ComputationID ComputationConfig .

op noComputation : -> Computation [ctor] .

op _/_ : ComputationID ComputationConfig -> Computation [ctor] .

31

Parameters are now objects with three attributes; exp, value and next-value. The attribute exp has
the expression of a parameter, and the value attribute has the current value of exp that was computed in the
previous iteration. The next-value attribute contains the value that will be used at the next computation
step. It is initially noValue, and becomes computing when the exp attribute is computing at the current
computation step.

class Parameter | exp : Exp, value : Value, next-value : Value? .

sort Value? . subsort Value < Value? .

ops noValue computing : -> Value? [ctor] .

6.2.1. Computing Expressions with the Computation Configuration
Whenever some expression needs to be evaluated, the computation configuration for the expression is

created in the computation attribute. When creating a computation configuration, the variable environment
of an expression is constructed from the free variables of the expression. The function freeVars(PE) returns
the set of all free variables in the expression, and the constructEnv creates the assignment map from those
free variables, where each variable is initially set to be unknown (denoted by NAME <-?):

op constructEnv : Exp -> EnvMap .

eq constructEnv(E) = constructEnv(freeVars(E)) .

op constructEnv : VarIdSet -> EnvMap .

eq constructEnv(VI ; VIS) = (VI <-?) ; constructEnv(VIS) .

eq constructEnv(none) = empty .

For example, if some output port has status present but has non-value expression (i.e., ProperExp), the
configuration for the expression is created to evaluate it, and the resulting value is plugged back into the
output port:

eq < O : Actor | ports : < P : OutPort | status : present, value : PE > PORTS,

computation : noComputation >

= < O : Actor | computation : #port(P) / exp(PE) constructEnv(PE) > .

eq < O : Actor | ports : < P : OutPort | status : present > PORTS,

computation : #port(P) / result(V) >

= < O : Actor | ports : < P : OutPort | value : V > PORTS, computation : noComputation > .

Similarly, parameters are computed when the next-value is computing, and the result value will be
written to the next-value.

eq < O : Actor | parameters : < RI : Parameter | exp : E, next-value : computing > PARAMS,

computation : noComputation >

= < O : Actor | computation : #param(RI) / exp(E) constructEnv(E) > .

eq < O : Actor | parameters : < RI : Parameter | next-value : computing > PARAMS,

computation : #param(RI) / result(V) >

= < O : Actor | parameters : < RI : Parameter | next-value : V > PARAMS,

computation : noComputation > .

For each unknown free variable in the variable environment, the corresponding value is transferred when
it is available. The value of an input port is transferred when the port becomes present :

eq < O : Actor | ports : < P : InPort | status : present, value : V > PORTS,

computation : CI / env(P <-? ; ENV) exp(E) >

= < O : Actor | computation : CI / env(P <-| V ; ENV) exp(E) > .

32

Similarly, the value of the parameter is transferred:

eq < O : Actor | parameters : < RI : Parameter | value : V > PARAMS,

computation : CI / env(RI <-? ; ENV) exp(E) >

= < O : Actor | computation : CI / env(RI <-| V ; ENV) exp(E) > .

If a variable in an expression refers to a parameter higher in the actor containment hierarchy, this
hierarchical scope is handled using messages in a similar way as the event handling in composite actors. If
a variable is not in the parameters of this actor, a query about this variable is sent to the parent actor by a
message query-var:

ceq < O : Actor | parameters : PARAMS, computation : CI / env(RI <-? ; ENV) exp(E) >

= < O : Actor | computation : CI / env(requesting RI ; ENV) exp(E) > query-var(O, RI)

if not RI in PARAMS .

If the variable is not available in the current composite actor, then the message is passed to its parent.
Otherwise, the corresponding value is returned by another message return-var as follows:

eq < O : CompositeActor | parameters : < RI : Parameter | value : V > PARAMS,

innerActors : query-var(AI, RI) ECF >

= < O : CompositeActor | innerActors : return-var(AI, RI, V) ECF > .

And the returned value is plugged into the variable environment:

eq < O : Actor | computation : CI / env(requesting RI ; ENV) exp(E) > return-var(O, RI, V)

= < O : Actor | computation : CI / env(RI <-| V ; ENV) exp(E) > .

During portFixPoints and postFire, such messages can freely move between different hierarchies:

eq portFixPoints(query-var(AI, VI) ECF) = query-var(AI, VI) portFixPoints(ECF) .

eq postfire(query-var(AI, VI) ECF) = query-var(AI, VI) postfire(ECF) .

eq return-var(AI, VI, V) portFixPoints(ECF) = portFixPoints(return-var(AI, VI, V) ECF) .

eq return-var(AI, VI, V) postfire(ECF) = postfire(return-var(AI, VI, V) ECF) .

Note that the variable ECF in the above equations is defined at the kind level so that those equations
can be applied when portFixPoints and postFire is executed further down in the hierarchy.

All computations should be finished before computing the next semantics function, and before advancing
to the next computation step. To ensure this, we introduced new sorts StableObject and StableConfiguration.
An actor object is a term of sort StableObject only if there is no (possible) ongoing computation, defined
by the following membership equations:

mb (< P : Port | value : V >) : StableObject .

mb (< RI : Parameter | next-value : noValue >) : StableObject .

mb (< RI : Parameter | next-value : V >) : StableObject .

mb (< O : AtomicActor | ports : STABLEPORTS, parameters : STABLEPARAMS >) : StableObject .

mb (< O : CompositeActor | innerActors : STABLEACTORS,

ports : STABLE-PORTS, parameters : STABLEPARAMS >) : StableObject .

Object configurations are StableConfiguration if all their objects are stable objects. The rewrite rule
executeStep is only applied when all actors are stable objects.

33

6.2.2. Actors with Generic Expression
Using the mechanism defined in the previous section, the semantics of actors with expressions can be

easily defined. For example, an expression actor has an output port output and may have several input
ports. It has also the additional attribute expression for an expression that defines the value of the output
as a function of the values of the inputs:

class Expression | expression : Exp .

subclass Expression < AtomicActor .

The portFixPoints of expression actors are straightforward and very similar to the case for ports and
parameters. If the output port is unknown, then the configuration for the expression is created and the
output port will have the evaluated value of the expression.

eq portFixPoints(< O : Expression | expression : E,

ports : < ’output : OutPort | status : unknown > PORTS,

computation : noComputation > REST)

= portFixPoints(< O : Expression | computation : #port(’output) / exp(E) constructEnv(E) > REST) .

eq portFixPoints(< O : Expression | ports : < ’output : OutPort | status : unknown > PORTS,

computation : #port(’output) / result(V) > REST)

= portFixPoints(< O : Expression | ports : < ’output : OutPort | status : present, value : V > PORTS,

computation : noComputation > REST) .

FSM actors may have general expressions in their guards, output actions, and set actions. The semantics
of FSM actors is similar to the above cases. During portFixPoints, all appropriate guard expressions are set
to be computed in the computation attribute. If one guard expression is evaluated to true, the expressions
in the output actions of the transition are transferred to the related output ports, and the expressions in
the ports are computed by the expression semantics of ports. Similarly, the guard expressions are computed
again during postfire10, and the set actions of the enabled transition are transferred to the exp attributes
of the corresponding parameters, and the next-value attributes are set to computing. Then the expression
semantics of parameters computes those expressions and all next-value attributes will eventually have the
evaluated values.

6.2.3. Parameter Computation in Computation Steps
A parameter with generic expressions is a function of the values of the other parameters which are

computed in the previous iteration. If a parameter is changed during postfire (e.g., set actions of FSM
actors), the exp and the next-value attributes are updated. Otherwise, the next values of all parameters
need to be computed after postfire. Also, the value in the next-value attribute is transferred to the value
attribute before starting the next computation step. Therefore, the executeStep rule is modified as follows:

rl [executeStep] :

{< global : EventQueue | queue : (EVTS ; 0 ; 0) :: QUEUE > SYSTEM}

=>

{< global : EventQueue | queue : QUEUE >

update (computeNextParams (postfire(portFixPoints(releaseEvt(EVTS) clearPorts(SYSTEM)))))} .

The computeNextParams function initiates the computation of the next values of parameters if they are not
computed yet, and overwrites the exp attribute if they are changed during postfire.

op computeNextParams : Configuration ~> Configuration .

eq computeNextParams(< O : AtomicActor | parameters : PARAMS >)

10Since it is assumed in Ptolemy II that at most one transition in an FSM actor can be enabled in any given state, the same
transition is taken in both portFixPoints and postfire.

34

= < O : AtomicActor | parameters : computeNextParams(PARAMS) > .

eq computeNextParams(< O : CompositeActor | parameters : PARAMS, innerActors : OBJECTS >)

= < O : CompositeActor | parameters : computeNextParams(PARAMS),

innerActors : computeNextParams(OBJECTS) > .

eq computeNextParams(< RI : Parameter | exp : E, next-value : noValue > PARAMS)

= < RI : Parameter | next-value : computing > computeNextParams(PARAMS) .

eq computeNextParams(< RI : Parameter | next-value : V > PARAMS)

= < RI : Parameter | exp : V > computeNextParams(PARAMS) .

eq computeNextParams(none) = none .

The update function updates the value of the parameters, and clears the next-value attribute.

op update : Configuration ~> Configuration .

eq update(< O : AtomicActor | parameters : PARAMS >)

= < O : AtomicActor | parameters : updateParams(PARAMS) > .

eq update(< O : CompositeActor | parameters : PARAMS, innerActors : OBJECTS >)

= < O : CompositeActor | parameters : updateParams(PARAMS), innerActors : update(OBJECTS) > .

op updateParams : Configuration ~> Configuration .

eq updateParams(< RI : Parameter | value : V, next-value : V’ > PARAMS)

= < RI : Parameter | value : V’, next-value : noValue > updateParams(PARAMS) .

eq updateParams(none) = none .

7. Formal Verification of Ptolemy II DE Models in Ptolemy II

Although simulations of Ptolemy II models are very useful for prototyping purposes, it is very hard to
use simulations to verify that a Ptolemy II model—even though it is assumed to be deterministic—satisfies
more advanced safety and liveness properties, such as those in Section 9. Furthermore, the verification effort
described in Section 9 made us aware of a design flaw in the Ptolemy II model of the fault tolerant traffic
light that had not been discovered during Ptolemy II simulations of model.

This section explains how the Real-Time Maude verification of a Ptolemy II DE design model has been
integrated into Ptolemy II, and how the user can easily verify his/her Ptolemy II model without having to
understand the Real-Time Maude representation of the Ptolemy II model.

Ptolemy II gives the user the possibility of adding a “code generation button” to a (top-level) Ptolemy II
model. When the blue RTMaudeCodeGenerator button in a Ptolemy II DE model is double-clicked, Ptolemy II
opens a dialog window which allows the user to start code generation and to give simulation and model
checking commands to execute and formally analyze the generated code. After clicking the Generate button
in the dialog window, the generated Real-Time Maude code and the result of executing the analysis com-
mands are displayed. Figure 6 shows the dialog window for the flat traffic light system in Section 3.7. The
two temporal logic properties discussed below have been entered into the window. The Generate button has
already been clicked and the results of model checking those properties are displayed in the “Code Generator
Commands” box. Figure 7 on page 40 shows the actual Real-Time Maude file, including the model checking
commands, generated by clicking on the Generate button.

As mentioned in Section 2, the synthesized Real-Time Maude verification model can be analyzed in
different ways. This paper focuses on linear temporal logic (LTL) model checking.

In Real-Time Maude, an LTL formula is constructed from a set of (possibly parametric) atomic state
propositions and the usual Boolean and LTL operators. Having to define such state propositions makes
the verification process nontrivial for the Ptolemy user, since it requires some knowledge of the Real-Time
Maude representation of the Ptolemy model, as well as the ability to define functions in Real-Time Maude.
To free the user from this burden, we have predefined several generic atomic propositions for Ptolemy II
models. For example, the proposition

actorId | var1 = value1, . . . , varn = valuen

35

Figure 6: Dialog window for the Real Time Maude code generation

holds in a state if the value of the parameter vari of the actor actorId equals valuei for each 1 ≤ i ≤ n,
where actorId is the global actor identifier of a given actor. Similarly, the propositions

actorId | port p is value actorId | port p is status actorId ? boolean expression

hold if, respectively, the port p of actor actorId has the value value, the port p has status status, or the
given boolean expression boolean expression is evaluated to true.

For FSM actors and modal models, the proposition

actorId @ location

is satisfied if and only if the actor with global name actorId is in location (or “local state”) location.
The semantics of the above atomic propositions is defined as explained in Section 2.3. In particular, the

proposition _@_ for locations is defined by:

eq {< O : FSM-Actor | currState : L > CF} |= O @ L = true .

eq {< O : ModalModel | controller : CO, innerActors : ACTS > CF} |= O @ L = {ACTS} |= CO @ L .

eq {< O : CompositeActor | innerActors : OBJECTS > CF} |= (O . AI) @ L = {OBJECTS} |= AI @ L .

eq {< O : Actor | > CF} |= O @ L = false [owise] .

The definitions of atomic propositions for parameters and ports are similar.
An LTL formula may contain multiple occurrences of atomic propositions. To avoid having to write long

global actor names too many times, we can simplify a formula with actor scope, so that

actorId : formula

denotes that formula should hold in the actor with the global identifier actorId . For example, the formula
o1. o2 : [] (o3 @ l1 /\ o4 . o5 @ l2) equals the formula [] (o1. o2 . o3 @ l1 /\ o1 . o2 . o4 . o5 @ l2).

36

Consider the flat traffic light system given in Section 3.7, where each traffic light is represented by a set
of variables. The safety property we want to verify is that it is never the case that both the car light and
the pedestrian light show green at the same time. If the name of the model is ’DE_SimpleTrafficLight,
then (’DE_SimpleTrafficLight | (’Pgrn = # 1, ’Cgrn = # 1)) holds in all states where the Pgrn and
Cgrn variables both have the value 1. The safety property we are interested in, that such a state can never
be reached, can be defined as the LTL formula

[] ~ (’DE_SimpleTrafficLight | (’Pgrn = # 1, ’Cgrn = # 1))

Alternatively, the LTL formula

[] ~ ’DE_SimpleTrafficLight : (’CarLight @ ’Cgrn /\ ’PedestrianLight @ ’Pgreen)

states that it is never the case that the CarLight actor is in local state Cgrn when the PedestrianLight
actor is in local state Pgreen.

We can also check the liveness property that both pedestrian and cars can cross infinitely often. That
is, it is infinitely often the case that the pedestrian light is green when the car light is not green, and it is
also infinitely often the case that the car light is green when the pedestrian light is not green:

’DE_SimpleTrafficLight : ([]<>(this | ’Pgrn = # 1, ’Cgrn = # 0) /\ []<>(this | ’Pgrn = # 0, ’Cgrn = # 1))

8. Real-Time Maude Code Generation from Ptolemy II Models

This section explains how we have used Ptolemy II’s code generation facilities to automatically synthesize
a Real-Time Maude verification model from a Ptolemy II DE design model.

Ptolemy II provides an adapter infrastructure to support the generation of code into any target language.
In particular, Ptolemy II provides a Java class CodeGeneratorHelper that contains utility methods such
as getComponent(), which returns a Java object containing all information about an actor, including its
name, parameters, ports, inner actors, etc. This class furthermore contains “skeleton” functions like String
generateFireCode(), which should generate the code executed when the actor is “fired,” Set getShared-
Code(), which should generate code shared by multiple instances of the same actor class, and so on. For
each kind of actor, we must define an adapter class that extends the class CodeGeneratorHelper.

An adapter class may have an associated template file containing code blocks of the form

/***header (parameters)***/

code pattern

/**/

where the code pattern is code written in the target language, but that can be parametrized with variables,
and also have macro functions. Macros are prefixed with ‘$’. By using template files, target language code
can be separated from a Java class file, so that readability and maintainability are increased.

For the Real-Time Maude code generation, each adapter class A has an associated template file that
includes a code block with header semantics_A, which is just the Real-Time Maude module defining the
formal semantics of the actor A. The template file also includes a code block with header attr_A that defines
the attributes of the actor and their initial values. Moreover, if the actor A has its own atomic proposition
pattern, then a code block with header formal_A is included for the definition of such a proposition. In
Ptolemy, each actor class is a subclass of the class Entity. Therefore, we define an adapter class for Entity
that is a superclass of every actor adapter class. The template file for Entity hence contains

/***semantics_Entity***/

(tomod ACTOR is

...

class Actor | ports : Configuration, parameters : Configuration,

status : ActorStatus, computation : Computation .

37

...

endtom)

/**/

/***fireBlock($attr_terms)***/

< ’$info(name) : $info(class) | $attr_terms >

/**/

/***attr_Entity***/

ports : ($info(ports)),

parameters : ($info(parameters)),

status : enabled,

computation : noComputation

/**/

/***formal_Entity***/

(tomod CHECK-ACTOR is

...

endtom)

/**/

The parameter attr_terms will be replaced by set of attr Actor code blocks for each Actor that is a
superclass of the given actor. $info is a macro that uses Ptolemy’s getComponent() to extract information,
such as the name, the class, etc., about the actor instance. Likewise, the template file for CurrentTime
contains

/***semantics_CurrentTime***/

(tomod CURRENT-TIME is inc ACTOR .

...

class CurrentTime | current-time : Time . subclass CurrentTime < Actor .

...

eq portFixPoints(...) =

endtom)

/**/

/***attr_CurrentTime***/

current-time : 0

/**/

The Real-Time Maude code generation is implemented by redefining the functions getSharedCode()
and generateFireCode() in the adapter class for each type of actor. The function getSharedCode() is
used to generate the Real-Time Maude modules defining the semantics of those actors that appear in the
Ptolemy II model, and is defined as the following Java function that returns the set of all code blocks whose
header starts with “semantics” and “formal”:

public Set getSharedCode() throws IllegalActionException {

// Use LinkedHashSet to give order to the shared code.

Set sharedCode = new LinkedHashSet();

semanticsIncludes = getModuleCode("semantics");

formalIncludes = getModuleCode("formal");

for (String m : semanticsIncludes) sharedCode.add(getRTMmodule().get(m));

for (String m : formalIncludes) sharedCode.add(getRTMmodule().get(m));

return sharedCode;

}

38

The auxiliary function getModuleCode(header) reads the code blocks whose names start with header from
the related templates of the adapter class, including those of its all superclasses. Hence, for a CurrentTime
actor, getSharedCode() returns the above two Real-Time Maude modules ACTOR and CURRENT-TIME (and
adds modules for LTL model checking in the same way).

The function generateFireCode() is used to generate the Real-Time Maude term representing the
(initial state of the) given Ptolemy II model. It generates the code from the code templates with header
fireBlock and $attr in the appropriate adapter classes; that is, a Real-Time Maude object corresponding
to the initial state of the actor. For example, given a Ptolemy II CurrentTime actor with the name CT, the
generateFireCode() function returns the term

< ’CT : CurrentTime | current-time : 0,

ports :

< ’output : OutPort | value : # 0, status : absent >

< ’trigger : InPort | value : # 0, status : absent >,

parameters : emptyMap >

The generated Real-Time Maude code consists of semantics modules, formal analysis modules, the mod-
ule for the initial state of the model, and verification commends. Figure 7 on page 40 shows the resulting
code from the flat traffic light system.

9. Case Studies

This section presents three Ptolemy II discrete-event models and shows how they have been verified in
Real-Time Maude from within Ptolemy II. Section 9.1 presents the benchmark railroad crossing example,
Section 9.2 presents a hierarchical model of a fault-tolerant traffic light system, and Section 9.3 presents an
assembly line due to Misra [33].

9.1. Railroad Crossing
In the benchmark railroad crossing example, a gate at the intersection of the train track and a road should

be lowered when a train is in the intersection. Figure 8 shows a Ptolemy II DE model RailroadSystem of
such a system. This model consists of two finite state machine (FSM) actors: a Train actor that models
trains, and a Gate actor that controls the gate. In addition, the model has Boolean variables Tin (which
is 1 when a train is in the intersection), Tleave (which is 1 when a train is leaving), Tapproaching, and
Gopen (which is 1 when the gate is open). State changes are triggered by a Clock actor. These variables
are set by signals from the output ports of the train and the gate controller.

The Train actor has five states (or locations), and a local variable distance denoting the distance
between the train and the beginning of the intersection. The Train has one input port Sec, and three
output ports Tin, Tleave, and Tapproaching. Initially, the state is in location Tinit. In the first step, a
new train is arriving, but is yet far away at a distance −10. The FSM actor stays in location far as long
as the distance < -3. The value of distance increases by 2 each time there is input in the Sec port (that
is, each time unit in our case) as long as the train is in state far. When distance has reached −3, the
train takes a transition to location approaching, where it stays until the distance reaches 0. At the same
time, it outputs a signal with value 1 through its Tapproaching output port. A train that is approaching
the intersection slows down; therefore, the distance only increases by one for each time unit in location
approaching (as well as in locations within and leaving). When the distance to the intersection is 0,
the actor goes to state within, and emits a signal through its Tin port. When the distance is greater
than or equal to 3, the train is leaving the intersection, and an output is emitted through the Tleave port.
Finally, when the distance becomes greater than or equal to 10, the train disappears and a signal with
value 0 is output through all three output ports. The actor goes to location far and the next train is seen
in the horizon, and the distance is set to -10.

The Gate actor responds to input from the Train actor through its Tapproaching, Tin, and Tleave
input ports by the necessary signal through its Gopen output port.

39

******** include basic definitions ********

load ptolemy-base.maude

******** semantics modules ********

(tomod ACTOR is ... endtom)

(tomod COMPOSITE-ACTOR is ... endtom)

(tomod ATOMIC-ACTOR is ... endtom)

(tomod CLOCK is ... endtom)

(tomod FSM-ACTOR is ... endtom)

(tomod SET-VARIABLE is ... endtom)

(tomod DELAY-ACTOR is ... endtom)

******** formal analysis modules ********

(tomod CHECK-ACTOR is ... endtom)

(tomod CHECK-COMPOSITE-ACTOR is ... endtom)

(tomod CHECK-FSM-ACTOR is ... endtom)

******** Initial model modules ********

(tomod INIT is

...

op init : -> Configuration .

eq init

= < global EventQUEUE | queue : nil >

init(< ’DE_SimpleTrafficLight : ConpositeActor |

status : enabled,

ports : none,

innerActors : (

< ’Clock : Clock | ... >

< ’CarLightNormal : FSM-Actor | ... >

< ’PedestrianLightNormal : FSM-Actor | ... >

< ’TimedDelay : Delay | ... >

< ’TimedDelay2 : Delay | ... >

< ’SetVariable : SetVariable | ... >

(’Clock ! ’output) ==> (’PedestrianLightNormal ! ’Sec ; ’CarLightNormal ! ’Sec)

...),

parameters : < ’Pred : Parameter | exp : # 1, value : # 1, status : valid >

< ’Pgrn : Parameter | exp : # 0, value : # 0, status : valid >

< ’Cred : Parameter | exp : # 1, value : # 1, status : valid >

< ’Cyel : Parameter | exp : # 0, value : # 0, status : valid >

< ’Cgrn : Parameter | exp : # 0, value : # 0, status : valid >,

computation : noComputation >) .

endtom)

(tomod PTOLEMY-MODELCHECK is

including INIT + CHECK-ACTOR + CHECK-COMPOSITE-ACTOR + CHECK-FSM-ACTOR .

endtom)

******** verification commands ********

(mc {init} |=u [] ~ (’DE_SimpleTrafficLight | (’Pgrn = # 1, ’Cgrn = # 1)) .)

(mc {init} |=u ’DE_SimpleTrafficLight : (

[]<>(this | ’Pgrn = # 1, ’Cgrn = # 0) /\ []<>(this | ’Pgrn = # 0, ’Cgrn = # 1)) .)

quit

Figure 7: The Real-Time Maude code generated by clicking on the Generate button in Fig. 6.

40

Figure 8: Ptolemy II DE model of the railroad crossing.

The main property that RailroadSystem must satisfy is the safety property that whenever a train
is in the intersection, the gate must be closed. In our model, a train is in the intersection when the
’Train actor is in location ’within, and the gate is closed when the ’Gate actor is in location ’closed.
Using the propositions defined in Section 7, the proposition (’RailroadSystem . ’Train @ ’within) and
(’RailroadSystem . ’Gate @ ’closed) hold in these cases, respectively. We want to verify that it is
always the case that the former implies the latter. In temporal logic, this can be given by the formula:

[] ((’RailroadSystem . ’Train @ ’within) -> (’RailroadSystem . ’Gate @ ’closed))

Verification of this property through the Real-Time Maude code generation and analysis interface in Ptolemy II
yielded the expected result true, proving that the desired property is satisfied in this Ptolemy model.

In addition, we have verified the following time-bounded property that says that it is always the case
that the Train actor will reach the state within within 7 time units from the start of system execution:

<> (’RailroadSystem . ’Train @ ’within) in time <= 7

The execution of each verification command in this case study took less than one second on a 2.4 GHz
Intel Core 2 Duo processor.

41

9.2. Hierarchical Traffic Light
This section describes the verification of the hierarchical Ptolemy II DE model in [34] that extends the

flat pedestrian crossing system described in Section 3.7 to a fault-tolerant traffic light system consisting of
one car light and one pedestrian light.

Figure 9 shows the model. The FSM actor Decision “generates” failures and repairs by alternating
between staying in location Normal for 15 time units and staying in location for Abnormal for 5 time units.
Whenever the actor takes a transition with target Normal, it sends a signal through its Ok port, and whenever
it reaches, or stays in, location Abnormal, the actor sends a signal through its Error port. TrafficLight
is a modal model ; whenever it is in error mode and receives a signal through its Ok port, the actor goes to
normal mode, and vice versa when it receives an Error event in normal mode. The FSM actor that refines
the error mode of TrafficLight has three states. In this mode, all lights are turned off (by sending a
value 0 through the corresponding port), except for the yellow light of the car light, which is blinking. The
refinement of the normal mode in TrafficLight is the composite actor that consists of the two FSM actors
CarLight and PedestrianLight, that define the behavior of the two lights during normal operations, and
that were explained in Section 3.7. As before, Pred, Pgrn, Cred, Cyel, and Cgrn are variables that denote
the current color(s) (if any) of the lights. Finally, the Clock actor produces an event every time unit.

The main properties that we have verified are the safety property

[] ~ (’HierarchicalTrafficLight | (’Pgrn = # 1, ’Cgrn = # 1))

and the liveness property

’HierarchicalTrafficLight :

([] <> (this | ’Pgrn = # 1, ’Cgrn = # 0) /\ [] <> (this | ’Pgrn = # 0, ’Cgrn = # 1))

that are both described in Section 7.
Using the support for model checking bounded response and minimum separation properties in Real-Time

Maude, we have analyzed some important timed properties.11 The following bounded response property
states that if some error has occurred (i.e., the decision actor generates an error), then the car light turns
yellow within one time unit:

(’HierarchicalTrafficLight : ’Decision | port ’Error is present)

=> <>le(1) (’HierarchicalTrafficLight | ’Cyel = # 1)

The following bounded response property states that not only will the car light turn yellow within 1 time
unit of a failure, but the other car lights will be turned off:

(’HierarchicalTrafficLight : ’Decision | port ’Error is present)

=> <>le(1) (’HierarchicalTrafficLight | ’Cyel = # 1, ’Cgrn = # 0, ’Cred = # 0)

Model checking this property returns a counter-example which shows that, after a failure, the car light
may also show red or green in addition to blinking yellow. The reason for this flaw is that each time we
enter the error mode, the Error actor is not re-initialized. We observed this undesired behavior also during
simulations of the model in Ptolemy II (after we had found the flaw during Real-Time Maude verification).

The final bounded response property that we have verified is that whenever the traffic light goes to an
error state, it is repaired within at most 6 time units:

(’HierarchicalTrafficLight : ’TrafficLight @ ’error)

=> <>le(6) (’HierarchicalTrafficLight : ’TrafficLight @ ’normal)

11To use these metric LTL model checking commands, we must make some small changes in the generated Real-Time Maude
model, so that the model is specified according to the guidelines in [6]. These metric LTL model checking commands are
therefore not available through the Ptolemy II interface at the moment.

42

TrafficLight

TrafficLight

Error

Normal

Decision

HierarchicalTrafficLight

Figure 9: A hierarchical fault-tolerant traffic light system.

Model checking the following minimum separation property verifies that there is at least 16 time units
between a repair of an error and the emergence of the next error:

(’HierarchicalTrafficLight : ’TrafficLight @ ’error) separated by >= 16

Finally, model checking the following minimum separation property verifies that there is at least 3 time
units between consecutive red pedestrian lights:

(’HierarchicalTrafficLight | ’Pred = # 1) separated by >= 3

The execution of each verification command took around seven seconds in this case study.

9.3. Assembly Line
Finally, we have simulated in Real-Time Maude the “assembly line” example of Misra [33] given in Fig. 10.

Here, an “advanced” clock Jobs generates a set of jobs at certain times. The timed plotter JobArrivedTime
records the actual times (obtained through the CurrentTime actor) when the jobs arrived.

43

Figure 10: The assembly line example.

Each job has to be executed in three different ways (at Station1, Station2, and Station3). First,
a job gets assigned the time it takes to execute the first task of the job. This is done by the Ramp actor
ServiceTimes1. The actual “wait” is first done at the noninterruptible timer Station1. The point of using
a noninterruptible timer is that the count down does not start if some other job is serviced. This can be
compared to a gas station. It takes so and so long to fill up the gas tank of your car, but if someone else
is already pumping gas, you must also wait for that car to stop pumping and to drive away. After finishing
the first part of the job, the job is then assigned a duration of the second part in the ramp ServiceTimes2,
and waits accordingly at the noninterruptible timer Station2. Finally, when that wait is over, the process
repeats for the third part of the task. The timed plotter StationsFinishedTimes records the times when
jobs finish executing the first, the second, and the third “part” of the jobs.

To simulate the system up to time t in Real-Time Maude, we just write the time bound t in the
Simulation bound item of the dialog window (see Fig. 6). The output shows the final state, where the
’StationsFinishedTimes object shows the times when events happened at the different ports:

Result ClockedSystem :

< ’AssemblyLine : CompositeActor |

innerActors : (

< ’StationsFinishedTimes : TimedPlotter |

currentTime : 49,

event-history :

(source: ’Station1 ! ’output time: 9 value: # 1) ++

(source: ’Station1 ! ’output time: 19 value: # 1) ++

(source: ’Station2 ! ’output time: 21 value: # 2) ++

(source: ’Station3 ! ’output time: 23 value: # 3) ++

(source: ’Station1 ! ’output time: 31 value: # 1) ++

(source: ’Station2 ! ’output time: 36 value: # 2) ++

(source: ’Station1 ! ’output time: 37 value: # 1) ++

(source: ’Station2 ! ’output time: 38 value: # 2) ++

(source: ’Station3 ! ’output time: 39 value: # 3) ++

(source: ’Station3 ! ’output time: 40 value: # 3) ++

(source: ’Station2 ! ’output time: 45 value: # 2) ++

(source: ’Station3 ! ’output time: 49 value: # 3),

parameters : none, computation : noComputation, status : enabled >

...),

44

parameters : none, ports : none, status : enabled, computation : noComputation >

< global : EventQueue | queue : nil > in time 49

For example, we see that Station2 finish each job at time 21, 36, 38 and 45, respectively. These results
are the same as the results shown in the Ptolemy II timed plotters after the Ptolemy II executions.

10. Related work

As mentioned in the introduction, this paper is a significantly extended version of an earlier conference
paper [20] and an earlier workshop paper [21]; the former defines a Real-Time Maude semantics for flat
Ptolemy II DE models and the latter proposes an extension to hierarchical models. Apart from providing
much more detail about the semantics, this paper both extends the previous semantics to handle complex
Ptolemy II expressions and also describes two additional case studies.

The semantics of Ptolemy II is often given in terms of abstract semantics, which consists of a set of
functions such as “initialize”, “fire”, “postfire”, etc., that actors are free to implement in different ways [14,
35]. Denotational semantics of DE models based on metric spaces are given in [36, 37, 38]. A different type
of denotational semantics, based on complete partial orders and domain theory, are given in [39, 40]. The
semantics proposed in [40] is however different from the semantics implemented in Ptolemy II. Obviously,
these semantics differ a lot from ours, e.g., in that they are not executable. In addition, we are not aware
of formal model checking analysis methods that are applicable to the above semantics.

A preliminary exploration of translations of synchronous reactive (i.e., untimed) Ptolemy II models into
Kripke structures, that can be analyzed by the NuSMV model checker, and of DE models into communicating
timed automata is given in [41]. However, they require data abstraction to map models into finite automata,
and they do not use the code generation framework.

In the context of model transformations of embedded systems, [42] describes a method to automati-
cally translate discrete-time Simulink models to programs written in the synchronous language Lustre [43].
Discrete-time Simulink and Lustre are close to the SR (synchronous-reactive) model of computation of
Ptolemy II, but quite different from DE, e.g., SR models lack a notion of quantitative time. [44] describes
a method to automatically translate Stateflow models to Lustre. Stateflow is Simulink’s hierarchical state
machine notation, visually akin to Statecharts [45], but with different semantics. Automatic translation
of more general Simulink/Stateflow models to hybrid automata [46], using a different technique of graph
transformations is described in [47]. Key in this technique is the use of metamodels to specify the source and
target models, as well as the transformation rules [3]. This type of model transformation is different from
the code generation technique used in this paper, which is an extension of the methods described in [48].
The works [42, 44, 47] can also be seen as giving formal semantics to Simulink/Stateflow, via Lustre or
hybrid automata. A direct approach to giving formal semantics to Stateflow is described in [49].

On the other hand, Maude has been used to give semantics to a wide range of programming and modeling
languages (see, e.g., [50, 51]). And, as mentioned in the introduction, Real-Time Maude has been used to
define the semantics of an array of real-time modeling languages [8, 9, 10, 11, 12, 13], but we are not aware
of any translation of a synchronous real-time language into Maude or Real-Time Maude.

11. Concluding Remarks

This paper has explained how we have formalized in Real-Time Maude the semantics of a large subset
of Ptolemy II DE models. This is a challenging task, since Ptolemy II DE models combine a fixed-point
synchronous semantics with hierarchical structure, explicit time, and a rich expression language. The ex-
pressiveness of Real-Time Maude is necessary to define this semantics, including the use of unbounded data
structures, nested objects, and advanced membership equational logic features such as partial functions and
the ‘owise’ construct. An additional contribution of our work is the clarification of the semantics of modal
models, for which we have given a composite-actor semantics in Ptolemy II.

We have leveraged Ptolemy II’s adapter code generation infrastructure to automatically generate Real-
Time Maude code from a Ptolemy II DE model. Furthermore, we have integrated Real-Time Maude

45

verification into Ptolemy II, and have defined useful atomic propositions, so that a Ptolemy II DE model can
be easily verified in Ptolemy II. This enables a model-engineering process that combines the convenience of
Ptolemy II modeling and simulation with formal verification in Real-Time Maude. We have illustrated such
formal verification by LTL model checking on two case studies, and have verified properties that cannot
be verified by Ptolemy II simulations. We also discovered a previously unknown design flaw in one of the
Ptolemy II models during our verification efforts.

The techniques used to define the Real-Time Maude semantics for Ptolemy II DE models should be
useful for defining the semantics of other hierarchical synchronous languages. For example, motivated by
the complexity-reducing PALS (physically asynchronous, logically synchronous) architecture pattern [52, 53],
which allows us to verify a synchronous real-time system design while ensuring that the properties also hold
for the system’s distributed asynchronous implementation, some of us are currently involved in an effort to
extend the avionics modeling standard AADL [54] to synchronous behavioral AADL models. Since AADL
models are hierarchical, the techniques in this paper could carry over to the definition of a Real-Time Maude
semantics of a synchronous version of AADL, endowing such AADL models with verification capabilities.

This work should continue in different directions. We should cover larger subsets of Ptolemy II mod-
els, including other models of computation, and should verify larger and more sophisticated applications.
We should also add other relevant analysis methods, such as, e.g., statistical model checking to analyze
probabilistic Ptolemy II models. Finally, counterexamples from Real-Time Maude verification should be
visualized in Ptolemy II; this should be fairly easy to achieve since our semantics preserves the hierarchical
structure of Ptolemy II models.

Acknowledgments
This work was done as part of the Lockheed Martin Advanced Technology Laboratories’ NAOMI

project [55] on multi-modeling design methodologies. We thank the members of the NAOMI project for
encouraging this research; Christopher Brooks, Chihhong Patrick Cheng, and Man-Kit Leung for discus-
sions on Ptolemy II; and José Meseguer for encouraging us to define the formal semantics of Ptolemy II in
Real-Time Maude. We also thank the anonymous referees for many very helpful comments on a previous
version of this paper. We gratefully acknowledge financial support by Lockheed Martin Corporation, NSF
Grant CNS 08-34709, and The Research Council of Norway through the Rhytm project.

This work has also been supported in part by the Center for Hybrid and Embedded Software Sys-
tems (CHESS) at UC Berkeley, which receives support from the National Science Foundation (NSF awards
#0720882 (CSR-EHS: PRET), #0931843 (ActionWebs) and #0720841 (CSR-CPS)), the U.S. Army Re-
search Office (ARO #W911NF-07-2-0019), the U.S. Air Force Office of Scientific Research (MURI #FA9550-
06-0312 and AF-TRUST #FA9550-06-1-0244), the Air Force Research Lab (AFRL), the Multiscale Systems
Center (MuSyc) and the following companies: Agilent, Bosch, National Instruments, Thales, and Toyota.

References

[1] J. Sztipanovits, G. Karsai, Model-integrated computing, IEEE Computer 30 (1997) 110–112.
[2] J. Sztipanovits, G. Karsai, Embedded software: Challenges and opportunities, in: EMSOFT’01, Vol. 2211 of Lecture

Notes in Computer Science, Springer, 2001.
[3] G. Karsai, J. Sztipanovits, A. Ledeczi, T. Bapty, Model-integrated development of embedded software, Proceedings of the

IEEE 91 (1) (2003) 145–164.
[4] P. C. Ölveczky, J. Meseguer, Specification of real-time and hybrid systems in rewriting logic, Theoretical Computer Science

285 (2002) 359–405.
[5] S. Gyapay, D. Varró, R. Heckel, Graph transformation with time, Fundam. Inform. 58 (1) (2003) 1–22.
[6] P. C. Ölveczky, J. Meseguer, Semantics and pragmatics of Real-Time Maude, Higher-Order and Symbolic Computation

20 (1-2) (2007) 161–196.
[7] P. C. Ölveczky, J. Meseguer, Abstraction and completeness for Real-Time Maude, Electronic Notes in Theoretical Com-

puter Science 176 (4) (2007) 5–27.
[8] H. Ding, C. Zheng, G. Agha, L. Sha, Automated verification of the dependability of object-oriented real-time systems, in:

Proc. WORDS’03, IEEE Computer Society Press, 2003.
[9] M. AlTurki, J. Meseguer, Real-time rewriting semantics of Orc, in: M. Leuschel, A. Podelski (Eds.), Proc. PPDP’07,

ACM, 2007, pp. 131–142.

46

[10] M. AlTurki, D. Dhurjati, D. Yu, A. Chander, H. Inamura, Formal specification and analysis of timing properties in software
systems, in: FASE’09, Vol. 5503 of Lecture Notes in Computer Science, Springer, 2009, pp. 262–277.

[11] P. C. Ölveczky, A. Boronat, J. Meseguer, Formal semantics and analysis of behavioral AADL models in Real-Time Maude,
in: Proc. FMOODS/FORTE’10, Vol. 6117 of Lecture Notes in Computer Science, Springer, 2010, pp. 47–62.

[12] J. E. Rivera, F. Durán, A. Vallecillo, On the behavioral semantics of real-time domain specific visual languages, in: Proc.
WRLA’10, Vol. 6381 of Lecture Notes in Computer Science, Springer, 2010.

[13] A. Boronat, P. C. Ölveczky, Formal real-time model transformations in MOMENT2, in: FASE’10, Vol. 6013 of Lecture
Notes in Computer Science, Springer, 2010, pp. 29–43.

[14] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, Y. Xiong, Taming heterogeneity—the
Ptolemy approach, Proceedings of the IEEE 91 (2) (2003) 127–144.

[15] T. Henzinger, J. Sifakis, The discipline of embedded systems design, IEEE Computer 40 (10) (2007) 32–40.
[16] T. A. Henzinger, Two challenges in embedded systems design: predictability and robustness, Philosophical Transactions

of the Royal Society A 366 (1881) (2008) 3727–3736.
[17] G. S. Fishman, Discrete-Event Simulation: Modeling, Programming, and Analysis, Springer, 2001.
[18] Y. Zhao, E. A. Lee, J. Liu, A programming model for time-synchronized distributed real-time systems, in: RTAS’07,

IEEE, 2007.
[19] E. A. Lee, H. Zheng, Leveraging synchronous language principles for heterogeneous modeling and design of embedded

systems, in: EMSOFT, ACM, 2007.
[20] K. Bae, P. C. Ölveczky, T. H. Feng, S. Tripakis, Verifying Ptolemy II discrete-event models using Real-Time Maude, in:

ICFEM’09, Vol. 5885 of Lecture Notes in Computer Science, Springer, 2009, pp. 717–736.
[21] K. Bae, P. C. Ölveczky, Extending the Real-Time Maude semantics of Ptolemy to hierarchical DE models, in: Proc.

RTRTS’10, Vol. 36 of Electronic Proceedings in Theoretical Computer Science, 2010.
[22] K. Bae, P. Ölveczky, T. H. Feng, S. Tripakis, Verifying Ptolemy II discrete-event models using Real-Time Maude,

manuscript, http://www.ifi.uio.no/RealTimeMaude/Ptolemy (2009).
[23] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, C. Talcott, All About Maude - A High-Performance

Logical Framework, Vol. 4350 of Lecture Notes in Computer Science, Springer, 2007.
[24] R. Bruni, J. Meseguer, Semantic foundations for generalized rewrite theories, Theoretical Computer Science 360 (1-3)

(2006) 386–414.
[25] J. Meseguer, Conditional rewriting logic as a unified model of concurrency, Theoretical Computer Science 96 (1992) 73–155.
[26] J. Meseguer, Membership algebra as a logical framework for equational specification, in: F. Parisi-Presicce (Ed.), Proc.

WADT’97, Vol. 1376 of Lecture Notes in Computer Science, Springer, 1998, pp. 18–61.
[27] P. Viry, Equational rules for rewriting logic, Theoretical Computer Science 285 (2002) 487–517.

[28] D. Lepri, P. C. Ölveczky, E. Ábrahám, Model checking classes of metric LTL properties of object-oriented Real-Time
Maude specifications, in: Proc. RTRTS 2010, Vol. 36 of Electronic Proceedings in Theoretical Computer Science, 2010.

[29] R. Koymans, Specifying real-time properties with metric temporal logic, Real-Time Systems 2 (4) (1990) 255–299.
[30] R. Alur, T. Henzinger, Logics and models of real time: A survey, in: J. de Bakker, K. Huizing, W.-P. de Roever,

G. Rozenberg (Eds.), Real Time: Theory in Practice, Vol. 600 of Lecture Notes in Computer Science, Springer, 1992, pp.
74–106.

[31] E. Lee, A. Sangiovanni-Vincentelli, A unified framework for comparing models of computation, IEEE Trans. on Computer
Aided Design of Integrated Circuits and Systems 17 (12) (1998) 1217–1229.

[32] S. A. Edwards, E. A. Lee, The semantics and execution of a synchronous block-diagram language, Science of Computer
Programming 48 (1) (2003) 21–42.

[33] J. Misra, Distributed discrete-event simulation, ACM Comput. Surv. 18 (1) (1986) 39–65.
[34] C. Brooks, C. Cheng, T. H. Feng, E. A. Lee, R. von Hanxleden, Model engineering using multimodeling, in: 1st Interna-

tional Workshop on Model Co-Evolution and Consistency Management (MCCM ’08), 2008.
[35] E. Lee, H. Zheng, Leveraging synchronous language principles for heterogeneous modeling and design of embedded systems,

in: Proc. EMSOFT’07, ACM, 2007, pp. 114–123.
[36] E. A. Lee, Modeling concurrent real-time processes using discrete events, Ann. Softw. Eng. 7 (1-4) (1999) 25–45.
[37] X. Liu, E. Matsikoudis, E. A. Lee, Modeling timed concurrent systems, in: C. Baier, H. Hermanns (Eds.), Proc. CON-

CUR’06, Vol. 4137 of Lecture Notes in Computer Science, Springer, 2006, pp. 1–15.
[38] A. Cataldo, E. Lee, X. Liu, E. Matsikoudis, H. Zheng, A constructive fixed-point theorem and the feedback semantics of

timed systems, in: Proceedings of the 8th International Workshop on Discrete-Event Systems (WODES’06), 2006.
[39] X. Liu, E. A. Lee, CPO semantics of timed interactive actor networks, Theoretical Computer Science 409 (1) (2008)

110–125.
[40] A. Benveniste, P. Caspi, R. Lublinerman, S. Tripakis, Actors without Directors: a Kahnian View of Heterogeneous

Systems, in: HSCC’09, Vol. 5469 of Lecture Notes in Computer Science, Springer, 2009, pp. 46–60.
[41] C. P. Cheng, T. Fristoe, E. A. Lee, Applied verification: The Ptolemy approach, Technical Report UCB/EECS-2008-41,

EECS Department, University of California, Berkeley (April 2008).
[42] S. Tripakis, C. Sofronis, P. Caspi, A. Curic, Translating Discrete-Time Simulink to Lustre, ACM Transactions on Embedded

Computing Systems 4 (4) (2005) 779–818.
[43] P. Caspi, D. Pilaud, N. Halbwachs, J. Plaice, Lustre: a declarative language for programming synchronous systems, in:

14th ACM Symp. POPL, ACM, 1987.
[44] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, F. Maraninchi, Defining and Translating a “Safe” Subset of Simulink/Stateflow

into Lustre, in: Proc. EMSOFT’04, ACM, 2004, pp. 259–268.
[45] D. Harel, Statecharts: A visual formalism for complex systems, Sci. Comput. Programming 8 (1987) 231–274.

47

http://www.ifi.uio.no/RealTimeMaude/Ptolemy

[46] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicollin, A. Olivero, J. Sifakis, S. Yovine, The algorithmic
analysis of hybrid systems, Theoretical Computer Science 138 (1995) 3–34.

[47] A. Agrawal, G. Simon, G. Karsai, Semantic translation of Simulink/Stateflow models to hybrid automata using graph
transformations, Electronic Notes in Theoretical Computer Science 109 (2004) 43–56.

[48] G. Zhou, M.-K. Leung, E. A. Lee, A code generation framework for actor-oriented models with partial evaluation, in:
ICESS, Vol. 4523 of Lecture Notes in Computer Science, Springer, 2007.

[49] G. Hamon, A denotational semantics for Stateflow, in: EMSOFT ’05, ACM, 2005, pp. 164–172.
[50] A. Farzan, F. Chen, J. Meseguer, G. Rosu, Formal analysis of Java programs in JavaFAN, in: R. Alur, D. Peled (Eds.),

CAV, Vol. 3114 of Lecture Notes in Computer Science, Springer, 2004, pp. 501–505.
[51] J. Meseguer, G. Rosu, The rewriting logic semantics project, Theoretical Computer Science 373 (3) (2007) 213–237.
[52] A. Al-Nayeem, M. Sun, X. Qiu, L. Sha, S. P. Miller, D. D. Cofer, A formal architecture pattern for real-time distributed

systems, in: Proc. 30th IEEE Real-Time Systems Symposium, IEEE, 2009.
[53] J. Meseguer, P. Ölveczky, Formalization and correctness of the PALS architectural pattern for distributed real-time sys-

tems, Tech. rep., CS Dept., University of Illinois at Urbana-Champaign, http://hdl.handle.net/2142/17089 (September
2010).

[54] SAE AADL Team, AADL homepage, http://www.aadl.info/ (2009).
[55] T. Denton, E. Jones, S. Srinivasan, K. Owens, R. W. Buskens, NAOMI – an experimental platform for multi-modeling,

in: Proc. MoDELS’08, Vol. 5301 of Lecture Notes in Computer Science, Springer, 2008, pp. 143–157.

48

http://hdl.handle.net/2142/17089
http://www.aadl.info/

	Introduction
	Real-Time Maude
	Preliminaries: Object-Oriented Specification in Maude
	Object-Oriented Specification in Real-Time Maude
	Formal Analysis in Real-Time Maude

	Ptolemy II and its DE Model of Computation
	Discrete-Event Models
	Atomic Actors
	Composite Actors
	Modal Models
	Subset of Ptolemy II with Real-Time Maude Semantics
	Code Generation Infrastructure
	Example: A Simple Traffic Light System

	Real-Time Maude Semantics of Flat Ptolemy II DE Models
	Representing Flat Ptolemy II DE Models in Real-Time Maude
	Actors
	Ports
	Connections
	The Global Event Queue
	Example: Representing the Flat Traffic Light Model

	Specifying the Behavior of Flat DE Models
	Clearing Ports
	Computing the Fixed-Point for Ports
	Postfire

	Defining Initial States

	Real-Time Maude Semantics for Hierarchical DE Models
	Representing Hierarchical Actors
	Extracting and Adding Events to the Event Queue
	Defining clearPorts, portFixPoints, and postfire for Hierarchical Models
	Modal Models

	Extending the Real-Time Maude Semantics to DE Models with Expressions
	The Ptolemy Expression Language and its Semantics
	The Real-Time Maude Representation of Ptolemy II Expressions
	Rewriting Semantics of Ptolemy II Expression Language

	Real-Time Maude Semantics of Ptolemy II DE Models with Generic Expression
	Computing Expressions with the Computation Configuration
	Actors with Generic Expression
	Parameter Computation in Computation Steps

	Formal Verification of Ptolemy II DE Models in Ptolemy II
	Real-Time Maude Code Generation from Ptolemy II Models
	Case Studies
	Railroad Crossing
	Hierarchical Traffic Light
	Assembly Line

	Related work
	Concluding Remarks

