
Verifying Ptolemy II Discrete-Event Models
using Real-Time Maude

Kyungmin Bae1, Peter Csaba Ölveczky2, Thomas Huining Feng3, and
Stavros Tripakis3

1 University of Illinois at Urbana-Champaign
2 University of Oslo

3 University of California, Berkeley

Abstract This paper shows how Ptolemy II discrete-event (DE) models
can be formally analyzed using Real-Time Maude. We formalize in Real-
Time Maude the semantics of a subset of hierarchical Ptolemy II DE
models, and explain how the code generation infrastructure of Ptolemy
II has been used to automatically synthesize a Real-Time Maude veri-
fication model from a Ptolemy II design model. This enables a model-
engineering process that combines the convenience of Ptolemy II DE
modeling and simulation with formal verification in Real-Time Maude.

1 Introduction

Model-based design principles put the construction of models at the center of
embedded system design processes [16,9]. Useful models are executable, pro-
viding simulations of system functionality, performance, power consumption, or
other properties. Ideally, models are translated (code generated) automatically
to produce deployable embedded software. Commercial examples of such mod-
eling and code generation frameworks include Real-Time Workshop (from The
MathWorks) and TargetLink (from dSpace), which generate code from Simulink
models, and LabVIEW Embedded, from National Instruments. Models can also
be used to guide formal verification, which can provide proofs of safety properties
or identification of security vulnerabilities.

Ptolemy II is a well-established modeling and simulation tool, developed at
UC Berkeley, that provides a powerful and intuitive graphical modeling language
to allow a user to build hierarchical models that combine different models of
computations [6]. In this paper, we focus on discrete-event (DE) models, which
are explicit about timing behavior of systems. Discrete-event modeling is a time
honored and widely used approach for system simulation [8]. More recently, it
has been proposed as basis for synthesis of embedded real-time software [17].
The Ptolemy II realization of DE has a rigorous formal semantics rooted in the
fixed-point semantics of synchronous languages [11].

This paper describes our work on enriching a significant subset of hierarchi-
cal Ptolemy II DE models with formal verification capabilities using Real-Time

Maude [13] as back-end. Real-Time Maude is a high-performance tool that ex-
tends the rewriting-logic-based Maude [3] system to support the formal specifica-
tion and analysis of object-based real-time systems. Real-Time Maude provides
a spectrum of formal analysis methods, including rewriting for simulation pur-
poses, reachability analysis, and linear temporal logic (LTL) model checking.

In particular, we explain how we have enriched Ptolemy II DE models with
formal verification capabilities by:
1. Formalizing the semantics of transparent hierarchical Ptolemy II DE models

in Real-Time Maude.
2. Defining useful atomic state propositions, so that the Ptolemy user can

specify temporal logic properties to be verified without understanding how
Ptolemy models are represented in Real-Time Maude.

3. Using Ptolemy II’s code generation infrastructure [18] to automatically syn-
thesize a Real-Time Maude verification model from a Ptolemy design model,
and by explaining how both code generation and verification have been inte-
grated into Ptolemy, so that a Ptolemy model can be verified within Ptolemy.

This integration of Ptolemy II and Real-Time Maude enables a model-engineer-
ing process that combines the convenience of Ptolemy II modeling with formal
verification in Real-Time Maude.

The main contributions of our work are:
– Enriching Ptolemy with formal verification capabilities to verify properties,

such as the liveness property in Section 6, that cannot be checked using
Ptolemy simulations. Furthermore, the synthesized verification model can
be formally analyzed w.r.t. other properties (e.g., determinism, etc.).

– We show how Real-Time Maude can define the semantics of synchronous
languages with fixed-point semantics. These techniques should be useful for
defining the formal semantics of other synchronous languages. Our semantics
also provides a basis for extensions to, e.g., probabilistic Ptolemy models,
that can then be subjected to statistical model checking using tools like
VeStA [15].

Our work is conducted in the context of the NAOMI project [4], where Lock-
heed Martin Advanced Technology Laboratories (LM ATL), UC Berkeley, UIUC,
and Vanderbilt University work together to develop a multi-modeling design
methodology. A key part of this project is the systematic use of model transfor-
mations and code generation to maintain consistency across models.

Section 2 briefly introduces Ptolemy II and Real-Time Maude. The Real-
Time Maude semantics of Ptolemy II DE models is described in Section 3. Sec-
tion 4 presents the atomic propositions that allow the user to specify his/her LTL
properties without having the understand the Real-Time Maude translation of
a Ptolemy model. Section 5 explains the Real-Time Maude code generation and
integration into Ptolemy. Section 6 illustrates the use of our techniques to verify
a Ptolemy model. Finally, Section 7 presents some related work and Section 8
gives some concluding remarks. More details about the Real-Time Maude se-
mantics of Ptolemy DE, as well as three additional verification case studies, can
be found in the longer technical report [1].

2 Preliminaries on Real-Time Maude and Ptolemy

2.1 Rewriting Logic and Real-Time Maude

Modeling. A Real-Time Maude timed module specifies a real-time rewrite theory
of the form (Σ,E, IR,TR), where:

– (Σ,E) is a membership equational logic [3] theory with Σ a signature4 and
E a set of confluent and terminating conditional equations. (Σ,E) speci-
fies the system’s state space as an algebraic data type, and must contain a
specification of a sort Time modeling the (discrete or dense) time domain.

– IR is a set of (possibly conditional) labeled instantaneous rewrite rules spec-
ifying the system’s instantaneous (i.e., zero-time) local transitions, written
rl [l] : t => t′, where l is a label. Such a rule specifies a one-step transi-
tion from an instance of t to the corresponding instance of t′. The rules are
applied modulo the equations E.5

– TR is a set of tick (rewrite) rules, written with syntax

rl [l] : {t} => {t′} in time τ .

that model time elapse. {_} is a built-in constructor of sort GlobalSystem,
and τ is a term of sort Time that denotes the duration of the rewrite.

The initial state must be a ground term of sort GlobalSystem and must be
reducible to a term of the form {t} using the equations in the specifications.

The Real-Time Maude syntax is fairly intuitive. For example, function sym-
bols, or operators, are declared with the syntax op f : s1 . . . sn -> s. f is the
name of the operator; s1 . . . sn are the sorts of the arguments of f ; and s is
its (value) sort. Equations are written with syntax eq t = t′, and ceq t = t′ if
cond for conditional equations. The mathematical variables in such statements
are declared with the keywords var and vars. We refer to [3] for more details
on the syntax of Real-Time Maude.

We make extensive use of the fact that an equation f(t1, . . . , tn) = t with
the owise (for “otherwise”) attribute can be applied to a subterm f(. . .) only if
no other equation with left-hand side f(u1, . . . , un) can be applied.6

In object-oriented Real-Time Maude modules, a class declaration

class C | att1 : s1, ... , attn : sn .

declares a class C with attributes att1 to attn of sorts s1 to sn. An object of class
C in a given state is represented as a term < O : C | att1 : val1, ..., attn : valn >
of sort Object, where O, of sort Oid, is the object’s identifier, and where val1
to valn are the current values of the attributes att1 to attn. In a concurrent
4 i.e., Σ is a set of declarations of sorts, subsorts, and function symbols
5 E is a union E′∪A, where A is a set of equational axioms such as associativity, com-

mutativity, and identity, so that deduction is performed modulo A. Operationally, a
term is reduced to its E′-normal form modulo A before any rewrite rule is applied.

6 A specification with owise equations can be transformed to an equivalent system
without such equations [3].

object-oriented system, the state is a term of the sort Configuration. It has
the structure of a multiset made up of objects and messages. Multiset union
for configurations is denoted by a juxtaposition operator (empty syntax) that
is declared associative and commutative, so that rewriting is multiset rewriting
supported directly in Real-Time Maude.

The dynamic behavior of concurrent object systems is axiomatized by spec-
ifying each of its transition patterns by a rewrite rule. For example, the rule

rl [l] : < O : C | a1 : 0, a2 : y, a3 : w, a4 : z > =>

< O : C | a1 : T, a2 : y, a3 : y + w, a4 : z >

defines a parameterized family of transitions (one for each substitution instance)
which can be applied whenever the attribute a1 of an object O of class C has
the value 0, with the effect of altering the attributes a1 and a3 of the object.
“Irrelevant” attributes (such as a4, and the right-hand side occurrence of a2)
need not be mentioned in a rule (or equation).

A subclass inherits all the attributes and rules of its superclasses.

Formal Analysis. A Real-Time Maude specification is executable, and the tool
offers a variety of formal analysis methods. The rewrite command simulates
one behavior of the system up to a certain duration. It is written with syntax
(trew t in time <= τ .), where t is the initial state and τ is a term of sort
Time. The search command uses a breadth-first strategy to analyze all possible
behaviors of the system, by checking whether a state matching a pattern and
satisfying a condition can be reached from the initial state.

Real-Time Maude also extends Maude’s linear temporal logic model checker
to check whether each behavior, possibly up to a certain time bound, satisfies
a temporal logic formula. State propositions are terms of sort Prop, and their
semantics should be given by (possibly conditional) equations of the form

{statePattern} |= prop = b

for b a term of sort Bool, which defines the state proposition prop to hold in
all states {t} where {t} |= prop evaluates to true. A temporal logic formula
is constructed by state propositions and temporal logic operators such as True,
False, ~ (negation), /\, \/, -> (implication), [] (“always”), <> (“eventually”),
and U (“until”). The time-bounded model checking command has syntax

(mc t |=t formula in time <= τ .)

for initial state t and temporal logic formula formula .

2.2 Ptolemy II and its DE Model of Computation

The Ptolemy project7 studies modeling, simulation, and design of concurrent,
real-time, embedded systems. The key underlying principle in the project is the
7 http://ptolemy.eecs.berkeley.edu/

use of well-defined models of computation (MoCs) that govern the interaction
between concurrent components. A major problem area being addressed is the
use of heterogeneous mixtures of MoCs [6]. A result of the project is a software
system called Ptolemy II, implemented in Java. Ptolemy II allows a user to build
hierarchical models that combine different MoCs, including state machines, data
flow, and discrete-event models. Models can be visually designed and simulated.
In addition, Ptolemy II’s code generation capabilities allow models to be trans-
lated into models in other languages or into imperative code, e.g., in C and Java.

Discrete-Event Models in Ptolemy II The focus of this paper is the for-
malization of a subset of Ptolemy II discrete-event (DE) models in Real-Time
Maude. A Ptolemy II model is a hierarchical composition of actors with con-
nections between the actors’ input ports and output ports. The actors represent
data manipulation units, whose execution is governed by a special attribute be-
longing to the model called director. Such a model can itself be treated as an
actor, that we call a composite actor. (Non-composite actors are called atomic
actors.) Ptolemy II also supports modal models, which are models with finite
state machine controllers. See Section 2.3 for an example of a Ptolemy II model.

DE actors consume and produce events at their input and output ports,
according to the tagged signal model [10]. A tagged event is a pair (v, t) where v
is a value in a complete partial order (CPO) and t is a tag, modeling the time at
which the event occurs. Ptolemy II DE models use super-dense time, in which
a tag t is a pair (τ, n) ∈ R≥0 × N, where τ is the timestamp that indicates the
model time when this event occurs, and n is the microstep index. Super-dense
time is useful for modeling multiple events that happen at the same time (i.e.,
have the same timestamp), but in sequence, where perhaps some events cause
other events. Super-dense tags are totally ordered using a lexicographic order:
(τ1, n1) ≤ (τ2, n2) iff τ1 < τ2, or τ1 = τ2 and n1 ≤ n2.

The semantics of Ptolemy II DE models [10] combines a synchronous-reactive
fixed-point iteration with advancement of time governed by an event queue [11].
Events in that queue are ordered by their tags. Operation proceeds by iterations,
each time removing one or more events with the smallest tag from the queue.
That tag is considered the current model time. The removed events are fed to
their designated actors. After that, actors with events available are executed,
which may generate new events into the queue. A difference between Ptolemy II
and standard DE simulators is that, at any model time (τ, n), the semantics is
defined as the least fixed-point of a set of equations, similarly to a synchronous
model [5]. This allows Ptolemy II models to have arbitrary feedback loops. Se-
mantics of such models can always be given although they may result in unknown
(bottom) values, in case the model contains causality cycles. Conceptually, the
semantics can be captured as shown in Figure 1.

Code Generation Infrastructure. Ptolemy II offers a code generation frame-
work using an adapter-based mechanism. A codegen adapter is a component that
generates code for a Ptolemy II actor. An adapter essentially consists of a Java

Q := empty; // Initialize the event queue to be empty.

for each actor A do

A.inititialize(); // Initialize A; may generate new events in Q

while Q is not empty do

E := set of all events in Q with smallest tag;

remove elements of E from Q;

initialize ports with values in E or "unknown" (bottom of CPO);

while port values changed do

for each actor A receiving new values do

if A.prefire() then // Determine whether A needs to be fired

A.fire(); // May increase port values according to CPO

end while; // Fixed-point reached for the current tag

for each actor A that has been fired do

A.postfire(); // Updates actor state; may generate new events in Q

end while;

Figure 1. Pseudo-code of Ptolemy II DE semantics.

class file and a code template file that together specify the actor’s behavior. The
code template file contains code blocks written in the target language. Supplied
with a set of adapters and an initial model, the code generation framework ex-
amines the model structure and invokes the adapters to harvest code blocks from
the code template files. The main advantage of this scheme is that it decouples
the writing of Java code and target code (otherwise the target code would be
wrapped in strings and interspersed with Java code).

2.3 Example: A Simple Traffic Light System

Figure 2 shows a Ptolemy DE model of a simple non-fault-tolerant traffic light
system consisting of one car light and one pedestrian light at a pedestrian cross-
ing. Each traffic light is represented by a set of set variable actors (Pred and
Pgrn represent the pedestrian light, and Cred, Cyel, and Cgrn represent the
car light). A light is considered to be on iff the corresponding variable has the
value 1. The lights are controlled by the two finite state machine (FSM) ac-
tors CarLightNormal and PedestrianLightNormal that send values to set the
variables; in addition, CarLightNormal sends signals to the PedestrianLight-
Normal actor through its Pgo and Pstop output ports. These signals are received
by the PedestrianLightNormal actor after a delay of one time unit.

Figure 3 shows the FSM actor PedestrianLightNormal. This actor has three
input ports (Pstop, Pgo, and Sec), two output ports (Pgrn and Pred), three
internal states, and three transitions. This actor reacts to signals from the car
light (by way of the delay actors) by turning the pedestrian lights on and off.
For example, if the actor is in local state Pred and receives input through its
Pgo input port, then it goes to state Pgreen, outputs the value 0 through its
Pred output port, and outputs the value 1 through its Pgrn port.

Figure 2. Simple Traffic Light model in Ptolemy II

Figure 3. The PedestrianLightNormal FSM actor.

Figure 4 shows the FSM actor CarLightNormal. Assuming that the clock
actor sends a signal every time unit, we notice, e.g., that one time unit after
both the red and yellow car lights are on, these are turned off and the green car
light is turned on by sending the appropriate values to the variables (output:
Cred = 0; Cyel = 0; Cgrn = 1). The car light then stays green for two time units
before turning yellow.

3 Real-Time Maude Semantics of Ptolemy DE Models

This section gives a brief overview of the Real-Time Maude formalization of the
Ptolemy DE semantics that is the basis for our work. Due to the lack of space,
and in order to convey our ideas without introducing too much detail, we present
a slightly simplified version of our semantics, in that we present a semantics for

1. flat Ptolemy models; that is, models without hierarchical actors, and
2. assume that all Ptolemy expressions are constants.

The report [1] explains the Real-Time Maude semantics that we actually use,
and that covers the subset of Ptolemy listed in Section 3.1, including hierarchical

Figure 4. The CarLightNormal FSM actor.

actors and expressions with variables. The entire executable Real-Time Maude
semantics is available at http://www.ifi.uio.no/RealTimeMaude/Ptolemy.

3.1 Supported Subset of Ptolemy

We currently support Real-Time Maude analysis of transparent discrete event
(DE) Ptolemy models; that is, DE models where subdiagrams are also executed
under the DE director. We support composite actors, modal models, and the
following atomic actors: finite state machine (FSM), timed delay, variable delay,
clock, current time, timer, noninterruptible timer, pulse, ramp, timed plotter,
set variable, and single event actors. We also support connections with multiple
destinations, split signals, and both single ports and multi-input ports.

3.2 Representing Flat Ptolemy DE Models in Real-Time Maude

This section explains how a Ptolemy model is represented as a Real-Time Maude
term in (the slightly simplified version of) our semantics. We only show the
representation for a small subset of the actors listed above, and refer to [1] for
the definition of the other actors.

Our Real-Time Maude semantics is defined in an object-oriented style, where
the global state has the form of a multiset

{actors connections < global : EventQueue | queue : event queue >}

where

– actors are objects corresponding to the actor instances in the Ptolemy model,
– connections are the connections between the ports of the different actors, and
– < global : EventQueue | queue : event queue > is an object whose queue

attribute denotes the global event queue.

Actors. Each Ptolemy actor is modeled in Real-Time Maude as an object in-
stance of a subclass of the following class Actor:

class Actor | ports : Configuration, parameters : ValueMap .

The ports attribute denotes the set of ports of the actor. In our model, a port
is modeled as an object, as shown below. The parameters attribute represents
the parameters of the corresponding Ptolemy actor, together with their values,
as a semicolon-separated set of terms of the form ’parameter-name |-> value.

Current Time. Ptolemy’s current time actor produces an output token on each
firing with a value that is the current model time. In Real-Time Maude, such
actors are represented as object instances of the following class that extends the
class Actor with an attribute current-time denoting the current “model time”:

class CurrentTime | current-time : Time . subclass CurrentTime < Actor .

Timed Delay. A timed delay actor propagates an incoming event after a given
time delay. If the delay parameter is 0.0, then there is a ”microstep” delay on
the generation of the output event. Since the delay parameter is represented in
the parameters attribute of Actor, this subclass does not add any attributes:

class Delay . subclass Delay < Actor .

Set Variable. This actor contains a variable that is set by a signal:

class SetVariable | variableName : VarId . subclass SetVariable < Actor .

Finite State Machine (FSM) Actors. An FSM actor is a transition system con-
taining finite sets of states (or “locations”), local variables, and transitions. A
transition has a guard expression, and can contain a set of output actions and
variable assignments. When an FSM actor is fired, there is never more than one
enabled transition. If there is exactly one enabled transition then it is chosen
and the actions contained by the transition are executed. Under the DE director,
only one transition step is performed in each iteration.

An FSM-Actor is then characterized by its current state, its transitions, and
the current values of its local variables:

class FSM-Actor | currState : Location, initState : Location,

variables : ValueMap, transitions : TransitionSet .

subclass FSM-Actor < Actor .

A location is the sort of the local “states” of the transition system. In particular,
quoted identifiers (Qids) are state names. We model the transitions as a semi-
colon-separated set of transitions of the form
s1 --> s2 {guard: g output: pi1|-> ei′1

;. . .; pik|-> ei′
k
set: vj1|-> ej′

1
;. . .; vjl|-> ej′

l
}

for state/locations s1 and s2, port names pi, variables vi, and expressions ei.

Ports. A port is represented as an object, with a name (the identifier of the
port object), a status (unknown, present, or absent), and a value. We also
have subclasses for input and output ports:

class Port | status : PortStatus, value : Value .

class InPort . subclass InPort < Port .

class OutPort . subclass OutPort < Port .

sort PortStatus . ops unknown present absent : -> PortStatus [ctor] .

Connections. A connection is represented as a term po ==> pi1 ; . . . ; pin
of

sort Connection, where the pjs have the form a!p for a a name of an actor
and p a name of a port. Such a connection connects the output port po to all
the input ports pi1 , . . . , pin

Since connections appear in configurations, the sort
Connection is defined to be a subsort of the sort Object.

The Global Event Queue. The global event queue is represented by an object

< global : EventQueue | eventQueue : event queue >

where event queue is an ::-separated list, ordered according to time until firing,
of terms of the form

set of events ; time to fire ; microstep

where the set of events is a set of events, each event characterized by the “global
port name” where the generated event should be output and the corresponding
value, time to fire denotes the time until the events are supposed to fire, and
microstep is the additional “microstep” until the event fires.

Example: Representing the Flat Traffic Light Model. Consider the flat
non-fault-tolerant traffic light system given in Section 2.3. The Real-Time Maude
representation of the TimedDelay2 delay actor is then

< ’TimedDelay2 : Delay |

parameters : ’delay |-> # 1.0,

ports : < ’input : InPort | value : # 0, status : absent >

< ’output : OutPort | value : # 0, status : absent > >

Likewise, the FSM actor CarLightNormal is represented as the term8

< ’CarLightNormal : FSM-Actor |

initState : ’Cinit, currState : ’Cinit, variables : ’count |-> # 1,

ports : < ’Sec : InPort | value : # 0, status : absent >

< ’Pgo : OutPort | value : # 0, status : absent >

...,

8 To save space, some terms are replaced by ‘...’

transitions :

(’Cinit --> ’Cred

{guard: (# true)

output: (’Cred |-> # 1) ; (’Cyel |-> # 0) ; (’Cgrn |-> # 0)

set: ’count |-> # 0}) ;

(’Cred --> ’Cred

{guard: (isPresent(’Sec) && (’count lessThan # 2))

output: emptyMap set: ’count |-> (’count + # 1)}) ; ... > .

The connection from the output port output of the Clock actor to the input
port Sec of CarLightNormal and the input port Sec of PedestrianLightNormal
is represented by the term

(’Clock !’output) ==> (’PedestrianLightNormal ! ’Sec) ; (’CarLightNormal ! ’Sec)

The entire state thus consists of two FSM actor objects, ten connections, two
delay objects, five SetVariable objects, and the global event queue object.

3.3 Specifying the Behavior of Flat DE Models

As explained in Section 2.2, the behavior of Ptolemy DE models can be summa-
rized as repeatedly performing the following actions:

– Advance time until the time to fire the first events in the queue is (0, 0).
– Then an iteration of the system is performed. That is:

1. (Prefire) The events that are supposed to fire are added to the corre-
sponding output ports; the status of all other ports is set to unknown.

2. (Fire) Then the fixed point of all ports is computed by gradually increas-
ing the knowledge about the presence/absence of inputs to and output
from ports until a fixed-point is reached.

3. (Postfire) Finally, states are updated for actors with inputs or scheduled
events, and new events are generated and inserted into the event queue.

The following tick rule advances time until the time when the first events in
the event queue are scheduled (we first declare all the variables used):

vars SYSTEM OBJECTS PORTS PORTS’ REST : ObjectConfiguration . var N : Nat .

vars O O’ : Oid . var EVTS : Events . var NZT : NzTime . var NZ : NzNat .

vars P P’ : PortId . var QUEUE : EventQueue . vars T T’ : Time .

var PS : PortStatus . var EPIS : EportIdSet . vars V TV : Value .

var VAL : ValueMap . vars STATE STATE’ : Location .

var BODY : TransBody . var TG : TransGuard . var TRANSSET : TransitionSet .

rl [tick] :

{SYSTEM < global : EventQueue | queue : (EVTS ; NZT ; N) :: QUEUE >}

=>

{delta(SYSTEM, NZT)

< global : EventQueue | queue : (EVTS ; 0 ; N) :: delta(QUEUE, NZT) >}

in time NZT .

In this rule, the first element in the event queue has non-zero delay NZT. Time
is advanced by this amount NZT, and, as a consequence, the (first component
of the) event timer goes to zero. In addition, the function delta is applied to
all the other objects (denoted by SYSTEM) in the system. The function delta
defines effect of time elapse on the objects. This function is also applied to the
other elements in the event queue, where it decreases the remaining time of each
event set by the elapsed time NZT (where x monus y equals max(0, x− y)):

op delta : EventQueue Time -> EventQueue .

eq delta((EVTS ; T ; N) :: QUEUE, T’)

= (EVTS ; T monus T’ ; N) :: delta(QUEUE, T’) .

eq delta(nil, T) = nil .

The function delta on configurations distributes over the elements in the
configuration, and must be defined on single objects, as shown later.

The next rule is a “microstep tick rule” that advances “time” with some
microsteps if needed to enable the first events in the event queue:

rl [shortTick] :

{SYSTEM < global : EventQueue | queue : (EVTS ; 0 ; NZ) :: QUEUE >}

=>

{SYSTEM < global : EventQueue | queue : (EVTS ; 0 ; 0) :: QUEUE >} .

Finally, when the remaining time and microsteps of the first events in the
event queue are both zero, an iteration of the system can be performed:

rl [executeStep] :

{SYSTEM < global : EventQueue | queue : (EVTS ; 0 ; 0) :: QUEUE >}

=>

{< global : EventQueue | queue : QUEUE >

postfireAll(portFixPoints(addEventsToPorts(EVTS, prefire(SYSTEM))))} .

The function prefire initializes each actor before firing. In particular, it sets the
status of each port to unknown. The operator addEventsToPorts inserts the
events scheduled to fire into the corresponding output ports. The portFixPoints
function then finds the fixed points for all the ports (fire), and postfire “ex-
ecutes” the steps on the computed port fixed-points by changing the states of
the objects and generating new events and inserting them into the global event
queue. These functions have sort Configuration, whereas the equations defin-
ing them involve variables of the subsort ObjectConfiguration, ensuring that
each function has finished computing before the “next” function is computed:

ops prefire portFixPoints postfire : Configuration -> Configuration .

To completely define the behavior of a system, we must define the functions
prefire, portFixPoints, postfire, and delta on the different actors.

Initialize Actors. In our simplified setting, the prefire function just clears
all the ports, that is, sets their status to unknown:

eq prefire(< O : Actor | ports : PORTS > REST)

= < O : Actor | ports : clearPorts(PORTS) > prefire(REST) .

eq prefire(SYSTEM) = SYSTEM [owise] .

op clearPorts : Configuration -> Configuration .

eq clearPorts(< P : Port | status : PS > PORTS)

= < P : Port | status : unknown > clearPorts(PORTS) .

eq clearPorts(none) = none .

Computing the Fixed-Point for Ports. The idea behind the definition of
the function portFixPoints, that computes the fixed-point for the values of all
the ports, is simple. The state has the form portFixPoints(actors and connec-
tions), where initially, the only port information are the events scheduled for
this iteration. For each possible case when the status of an unknown port can be
determined to be either present or absent, there is an equation

eq portFixPoints(< O : ... | ports : < P : Port | status : unknown > PORTS,

... >

connections and other objects) =

portFixPoints(< O : ... | ports : < P : Port | status : present ,

value : ... > PORTS, ... >

connections and other objects) .

(and similarly for deciding that input/output is absent). The fixed-point is
reached when no such equation can be applied. The portFixPoints operator is
then removed by using the owise construct of Real-Time Maude:

eq portFixPoints(OBJECTS) = OBJECTS [owise] .

The following equation propagates port status from a “known” output port
to a connecting unknown input port. The present/absent status (and possibly
the value) of the output port P of actor O is propagated to the input port P’ of
the actor O’ through the connection (O ! P) ==> ((O’ ! P’) ; EPIS):

ceq portFixPoints(

< O : Actor |

ports : < P : OutPort | status : PS , value : V > PORTS >

((O ! P) ==> ((O’ ! P’) ; EPIS))

< O’ : Actor | ports : < P’ : InPort | status : unknown > PORTS’ >

REST)

= portFixPoints(< O : Actor | > ((O ! P) ==> ((O’ ! P’) ; EPIS))

< O’ : Actor |

ports : < P’ : InPort | status : PS, value : V > PORTS’ >

REST)

if PS =/= unknown .

The portFixPoints function must then be defined for each kind of actor to
decide whether the actor produces any output in a given port. For example, the
timed delay actor does not produce any output in this iteration as a result of
any input. Therefore, if its status is unknown (that is, the delay actor did not
schedule an event for this iteration), its output port should be set to absent:

eq portFixPoints(

< O : Delay | ports : < P : OutPort | status : unknown > PORTS > REST)

= portFixPoints(

< O : Delay | ports : < P : OutPort | status : absent > PORTS > REST) .

Other actors generate immediate output when receiving input. For example,
when a current time actor fires, it outputs the current model time:

ceq portFixPoints(

< O : CurrentTime | current-time : T,

ports : < P : InPort | status : PS >

< P’ : OutPort | status : unknown > >

REST)

= portFixPoints(

< O : CurrentTime | ports : < P : InPort | >

< P’ : OutPort | status : PS , value : # T >

REST)

if PS =/= unknown .

The definition of portFixPoints for FSM actors relies on the assumption
that at most one transition is enabled at any time. In the following conditional
equation, one transition from the current state STATE is enabled. In addition,
there is some input to the actor (through input port P’), and some output ports
have status unknown. The function updateOutPorts then updates the status and
the values of the output ports according to the current state and input:

ceq portFixPoints(< O : FSM-Actor |

ports : < P’ : InPort | status : present >

< P : OutPort | status : unknown > PORTS,

currState : STATE, variables : VAL,

transitions : (STATE --> STATE’ {BODY}) ; TRANSSET >

REST)

= portFixPoints(< O : FSM-Actor |

ports : updateOutPorts(VAL, BODY,

< P : OutPort | > < P’ : InPort | > PORTS) >

REST)

if transApplicable(< P : OutPort | > < P’ : InPort | > PORTS, VAL, BODY) .

Another equation sets all output ports to absent if there is enough information
to determine that no transition can become enabled in the current round.

Postfire. The postfire function updates internal states and generates new
events that are inserted into the event queue. The postfire function distributes
over the actor objects in the configuration. An owise equation defines postfire
to be the identity function (that neither generates a future event nor changes its
local state) on those actors that do not have other equations defining postfire.

If a time delay actor has input in its ’input port, then it generates an event
with a delay equal to the current value of the ’delay parameter. If this delay is
0.0, the microstep is 1, otherwise the microstep is 0. This event is added to the
global event queue using the addEvent function that adds the new event into
the correct place in the event queue:

eq postfire(

< O : Delay | ports : < ’input : InPort | status : present, value : V >

< ’output : OutPort | >,

parameters : ’delay |-> TV ; MEM >)

< global : EventQueue | queue : EQ >

=

< O : Delay | >

< global : EventQueue | queue : addEvent(event(O ! ’output, V), toTime(TV),

if toTime(TV) == 0 then 1 else 0 fi, EQ) > .

An FSM actor does not generate future events, but postfire updates the
location and variables of the actor if it has input and has an enabled transition:

ceq postfire(< O : FSM-Actor |

ports : < P : InPort | status : present > PORTS,

variables : VAL, currState : STATE,

transitions : STATE --> STATE’ {guard: TG output: OL set: AL}

; TRANSSET) >)

= < O : FSM-Actor | variables : updateValues(VAL, AL), currState : STATE’ >

if transApplicable(< P : InPort | > PORTS, VAL, guard: TG output: OL set: AL).

Defining Timed Behavior. Finally, we must define the function delta, that
specifies the effect of time elapse, on single actors. Time elapse affects the in-
ternal state of CurrentTime actors by increasing the value of the current-time
attribute according to the elapsed time. Time elapse does not affect the other
actors we discuss here:

eq delta(< O : CurrentTime | current-time : T >, T’) =

< O : CurrentTime | current-time : T + T’ > .

eq delta(O:Object, T) = O:Object [owise] .

Defining Initial Events. The initial state is defined as the term

{init(< global : EventQueue | queue : nil > actors) connections }

where init adds the initial events of the system to the global event queue.

4 Formal Analysis of Ptolemy II DE Models

As mentioned in Section 2.1, the Real-Time Maude verification model synthe-
sized from a Ptolemy design model can be analyzed in different ways. In this
paper, we focus on linear temporal logic (LTL) model checking.

In Real-Time Maude, an LTL formula is constructed from a set of (possibly
parametric) atomic state propositions and the usual LTL operators, such as /\
(conjunction), ~ (negation), [] (“always”), <> (“eventually”), etc. Having to
define atomic state propositions makes the verification process nontrivial for
the Ptolemy user, since it requires some knowledge of the Real-Time Maude
representation of the Ptolemy model, as well as the ability to define functions
in Maude. To free the user from this burden, we have predefined some generic
atomic propositions. For example, the property

actorId | var1 = value1, . . . , varn = valuen

holds in a state if the value of each “variable” vari in the parameterss of an
actor equals valuei for each i ∈ {1, . . . , n}. Here, actorId is the global actor name
of a given actor (see below). For FSM actors (and modal models), the property

actorId @ location

holds if and only if the FSM actor with global name actorId is in location (or
“local state”) location. Since we may analyze also hierarchical models, the global
actor name actorId in the above formulas must be a list m . o1 . o2 on, for
n ≥ 0, where m is the name of the (top-level) model, o1 is the object name of a
top-level actor in this model, and oi+1 is the name of an inner actor of the actor
oi. Section 6 shows how these propositions can be used to verify Ptolemy models.

5 Code Generation and Integration with Ptolemy

This section shows how Ptolemy’s adapter code generation infrastructure has
been used to automatically generate Real-Time Maude code from a Ptolemy DE
model, and to integrate Real-Time Maude analysis of DE models into Ptolemy.

5.1 Implementing the Real-Time Maude Code Generator

Ptolemy gives the user the possibility of adding a “code generation button” to a
(top-level) Ptolemy model. When this button is double-clicked, Ptolemy opens a
dialog window which allows the user to start code generation and give commands
to execute the generated code.

Ptolemy provides an adapter infrastructure to support the generation of code
into any target language. In particular, Ptolemy provides a Java class Code-
GeneratorHelper that contains utility methods such as getComponent(), which
returns a (Java) object containing all information about an actor, including
its name, parameters, ports, inner actors, etc. This class furthermore contains

“skeleton” functions like String generateFireCode(), which should generate
the code executed when the actor is “fired,” Set getSharedCode(), which should
generate code shared by multiple instances of the same actor class, and so on.

An adapter class may have an associated template file containing code blocks
of the form /***header(parameters)***/ code pattern /**/, where the code
pattern is code written in the target language, but that can be parametrized
with variables, and also have macro functions. Macros are prefixed with ‘$’.

The Real-Time Maude code generation is implemented by redefining the
functions getSharedCode() and generateFireCode() in the adapter class for
each type of actor. For each adapter class A, its associated template file includes
a code block with header semantics_A that is just the Real-Time Maude module
defining the formal semantics of the actor A! The template file also includes a
code block with header attr_A that defines the attributes of the actor and their
initial values. In Ptolemy, each actor class is a subclass of the class Entity.
Therefore, we defined an adapter class for Entity that is a superclass of every
actor adapter class. The template file for Entity hence contains

/***semantics_Entity***/

(tomod ACTOR is

...

class Actor | ports : Configuration, parameters : ValueMap .

...

endtom)

/**/

/***fireBlock($attr_terms)***/

< ’$info(name) : $info(class) | $attr_terms >

/**/

/***attr_Entity***/

ports : ($info(ports)),

parameters : ($info(parameters))

/**/

The parameter attr_terms will be replaced by set of attr Actor code blocks for
each Actor a super class of the given actor. $info is a macro that uses Ptolemy’s
getComponent() to extract information, such as the name, the class, etc., about
the actor instance. Likewise, the template file for CurrentTime contains

/***semantics_CurrentTime***/

(tomod CURRENT-TIME is inc ACTOR .

...

class CurrentTime | current-time : Time . subclass CurrentTime < Actor .

...

eq portFixPoints(...) =

endtom)

/**/

/***attr_CurrentTime***/

current-time : 0

/**/

The function getSharedCode() is used to generate the Real-Time Maude
modules defining the semantics of those actors that appear in the Ptolemy model,
and is defined as a Java function that returns the set of all code blocks (from
the related template files) whose header starts with “semantics.” Hence, for a
CurrentTime actor, getSharedCode() returns the above two Real-Time Maude
modules (and adds modules for LTL model checking in the same way).

The function generateFireCode() is used to generate the Real-Time Maude
term representing the (initial state of the) given Ptolemy model. It generates
the code from the code templates with header fireBlock and $attr in the
appropriate adapter classes; that is, a Real-Time Maude object corresponding
to the initial state of the actor.

5.2 Verifying Ptolemy DE Models from within Ptolemy

We have integrated both code generation and verification into Ptolemy, so that
a Ptolemy DE model can be verified by pushing the RTMaudeCodeGenerator
button in the Ptolemy model. The dialog window that then pops up allows the
user to write his/her simulation and model checking commands. After clicking
the Generate button of the dialog window, the generated Real-Time Maude
code and the result of executing the analysis commands are shown in the dialog
box.

6 Examples and Case Studies

This section shows how the LTL model checking infrastructure in Section 4 and
the Real-Time Maude code generation can be used to verify Ptolemy DE models.

Verifying the Traffic Light Model. In the Ptolemy model in Section 2.3, each traf-
fic light is represented by set of variables. The safety property we want to verify
is that it is never the case that both the car light and the pedestrian light show
green at the same time. If the name of the model is ’DE_SimpleTrafficLight,
then (’DE_SimpleTrafficLight | (’Pgrn = # 1, ’Cgrn = # 1)) holds in
all states where the Pgrn and Cgrn variables both have the value 1. The safety
property we are interested in, that such a state can never be reached, can be
defined as the LTL formula

[] ~ (’DE_SimpleTrafficLight | (’Pgrn = # 1, ’Cgrn = # 1))

Alternatively, the LTL formula

[] ~ (’DE_SimpleTrafficLight . ’CarLightNormal @ ’Cgrn /\

’DE_SimpleTrafficLight . ’PedestrianLightNormal @ ’Pgreen)

states that it is never the case that the CarLightNormal FSM actor is in local
state Cgrn when the PedestrianLightNormal actor is in local state Pgreen.

We can also check the liveness property that both pedestrian and cars can
cross infinitely often. That is, it is infinitely often the case the pedestrian light
is green when the car light is not green, and it also infinitely often the case the
car light is green when the pedestrian light is not green:

[]<> (’DE_SimpleTrafficLight | (’Pgrn = # 1, ’Cgrn = # 0))

/\ []<> (’DE_SimpleTrafficLight | (’Pgrn = # 0, ’Cgrn = # 1))

As explained in Section 5.2, these formulas can be entered into the dialog box
that pops up when the RTMaudeCodeGenerator button is clicked in the Ptolemy
model; the dialog box will then display the results of the verification.

Other Examples and Case Studies. We have also verified the following three
larger Ptolemy DE models in the same way (see [1] for details):

1. A hierarchical fault-tolerant extension of the traffic light system,
2. the railroad crossing benchmark, and
3. an assembly line system originally due to Misra.

7 Related Work

A preliminary exploration of translations of synchronous reactive (i.e., untimed)
Ptolemy II models into Kripke structures, that can be analyzed by the NuSMV
model checker, and of DE models into communicating timed automata is given
in [2]. However, they require data abstraction to map models into finitary au-
tomata, and they do not use the code generation framework. On the other hand,
Maude has been used to give semantics to a wide range of programming and
modeling languages (see, e.g., [7,12]). Real-Time Maude is also used to analyze
AADL [14] models of avionics embedded systems, but we are not aware of any
translation of a synchronous real-time language into Maude or Real-Time Maude.

8 Concluding Remarks

We have formalized the semantics of a significant subset of transparent hierar-
chical Ptolemy II DE models in Real-Time Maude, and have shown how such
Ptolemy design models can be verified by integrating Real-Time Maude code
generation and model checking into Ptolemy, enabling a model-engineering pro-
cess for embedded systems that leverages the convenience of Ptolemy II DE
modeling and simulation with the formal verification of Real-Time Maude.

This work should continue in different directions. We should cover larger
subsets of Ptolemy II and verify larger and more sophisticated applications. We
should also add other relevant analysis methods, such as, e.g., statistical model
checking to analyze probabilistic Ptolemy II models. Finally, counterexamples
from Real-Time Maude verification should be visualized in Ptolemy II.

Acknowledgments. This work is part of the Lockheed Martin Advanced Technol-
ogy Laboratories’ NAOMI project. We thank the members of the NAOMI project for
enabling and encouraging this research; Christopher Brooks, Chihhong Patrick Cheng,
Edward A. Lee, and Man-Kit Leung for discussions on Ptolemy II; Edward A. Lee
for suggestions to drafts of this paper; José Meseguer for encouraging us to study the
formal semantics of Ptolemy in Real-Time Maude; and Lockheed Martin, through the
NAOMI project, and The Research Council of Norway for financial support.

References

1. Bae, K., Ölveczky, P., Feng, T.H., Tripakis, S.: Verifying Ptolemy II discrete-
event models using Real-Time Maude (2009), manuscript, http://www.ifi.uio.
no/RealTimeMaude/Ptolemy

2. Cheng, C.P., Fristoe, T., Lee, E.A.: Applied verification: The Ptolemy approach.
Technical Report UCB/EECS-2008-41, EECS Department, University of Califor-
nia, Berkeley (April 2008)

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework, LNCS, vol. 4350.
Springer (2007)

4. Denton, T., Jones, E., Srinivasan, S., Owens, K., Buskens, R.W.: NAOMI –
an experimental platform for multi-modeling. In: MoDELS’08. LNCS, vol. 5301.
Springer (2008)

5. Edwards, S., Lee, E.: The semantics and execution of a synchronous block-diagram
language. Science of Computer Programming 48, 21–42(22) (July 2003)

6. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity—the Ptolemy approach. Proceedings
of the IEEE 91(2), 127–144 (2003)

7. Farzan, A., Chen, F., Meseguer, J., Rosu, G.: Formal analysis of Java programs in
JavaFAN. In: CAV. LNCS, vol. 3114, pp. 501–505. Springer (2004)

8. Fishman, G.S.: Discrete-Event Simulation: Modeling, Programming, and Analysis.
Springer-Verlag (2001)

9. Giese, H., Karsai, G., Lee, E., Rumpe, B., Schätz, B. (eds.): Model-based Engi-
neering of Embedded Real-time Systems. Dagstuhl Seminar Proc. 07451 (2007)

10. Lee, E.A.: Modeling concurrent real-time processes using discrete events. Annals
of Software Engineering 7(1-4), 25–45 (1999)

11. Lee, E.A., Zheng, H.: Leveraging synchronous language principles for heteroge-
neous modeling and design of embedded systems. In: EMSOFT. ACM (2007)

12. Meseguer, J., Rosu, G.: The rewriting logic semantics project. Theoretical Com-
puter Science 373(3), 213–237 (2007)

13. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

14. SAE: AADL (2007), http://www.aadl.info/
15. Sen, K., Viswanathan, M., Agha, G.A.: VeStA: A statistical model-checker and

analyzer for probabilistic systems. In: QEST’05. IEEE (2005)
16. Sztipanovits, J., Karsai, G.: Model-integrated computing. IEEE Computer pp. 110–

112 (1997)
17. Zhao, Y., Lee, E.A., Liu, J.: A programming model for time-synchronized dis-

tributed real-time systems. In: RTAS’07. IEEE (2007)
18. Zhou, G., Leung, M.K., Lee, E.A.: A code generation framework for actor-oriented

models with partial evaluation. In: ICESS. LNCS, vol. 4523. Springer (2007)

