e that the two
* most suitable
lown evaluator
lata structures:
data structures

tree. First, we
ice 1s a linear
i numbers, 1.e.
7e to be stored.
The attributes
edures. But as
f the attributes

| grammars as
rms of control
in our method,
ariables (either
itic actions. In
meters and the
arget language.

2, 127-145 (1968).
Y, Department of

(1980).
Lecture Notes i

's’, The Computer
e in methodology-
Prentice Hall (to
! Tools, Addison-
.aboratories, 1975.

ttribute grammars
1we, University of

ribute grammars’,
mguages, Atlanta,

son-Wesley, 1976.
1 Prog. Lang. and

SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 18(7), 701-709 (JULY 1988)

Compiler Support for Floating-point
Computation

CHARLES FARNUM
Computer Science Department, University of California, Berkeley,
Berkeley, California 94720, U.SA.

SUMMARY

Predictability is a basic requirement for compilers of floating-point code — it must be possible
to determine the exact floating-point operations that will be executed for a particular source-
level construction. Experience shows that many compilers fail to provide predictability, either
because of an inadequate understanding of its importance or from an attempt to produce locally
better code. Predictability can be attained through careful attention to code generation and a
knowledge of the common pitfalls. Most language standards do not completely define the
precision of floating-point operations, and so a good compiler must also make a good choice in
assigning precisions of subexpression computation. Choosing the widest precision that will be
used in the expression usually gives the best trade-off between efficiency and accuracy. F inally,
certain optimizations are particularly useful for floating-point and should be included in a
compiler aimed at scientific computation. But predictability is more important than efficiency;
obtaining incorrect answers fast helps no one.

KeY WORDS Compilers Floating-point arithmetic ~ Optimization

INTRODUCTION

Floating-point programs must be carefully compiled in order to produce accurate
results. Data accessing primitives, control structures and integer arithmetic are clearly
defined in most language standards, since most hardware is more or less equivalent in
the support it offers for these tasks. But floating-point systems vary widely, so language
standards cannot specify perfectly the semantics of source-level floating-point oper-
ations.! The implementor is left with the difficult task of deciding what machine-level
operations will result from source-level code.

Unfortunately, most compiler writers are ill-equipped to handle this task. Compiler
texts and classes rarely address the peculiar problems of floating-point computation,
and research literature on the topic is generally confined to journals read by numerical
analysts, not compiler writers. Many production-quality compilers that are excellent
in other respects make basic mistakes in their compilation of floating-point, resulting
in programs that produce patently absurd results or, worse, reasonable but inaccurate
results.

An implementation of a large floating-point library is a job for specialists. But given
such a library, little information is actually needed to produce good floating-point code

Recerved 24 March 1987
Reuvised 21 December 1987

0038-0644/88/070701-09%05.00
© 1988 by John Wiley & Sons, Ltd.

702 C. FARNUM

for current machines. This paper provides the necessary information. Much of this
information is specific, and a short paper on the topic cannot possibly address all of
the issues; therefore, this paper is a compendium of floating-point concerns. A more
detailed view of the issues involved in floating-point computation can be obtained by
learning about the IEEE floating-point standard,” * a popular system that is fast
becoming the norm on new floating-point hardware.

Notational conventions

The following conventions are used in this article:

1. In general, computer-oriented entities are set in sanserif and mathematical entities
are in italics.

2. When discussing different precisions, the precision of programming variables is
indicated by the first letter of their name: s for single and d for double.

3. A mathematical symbol with the same name as a programming variable denotes
the mathematical value represented by the current bit-pattern of the programming
value.

4. The functions sngl and dble round their operands to single or double precision,
respectively.

5. The letter s or d over an arithmetic operator indicates that the result of that
operator is rounded to the given precision.

PRODUCE PREDICTABLE CODE

A programmer must be able to predict the floating-point operations that will result
from a particular source-level construct in order to write good code. Without such
predictability, guaranteeing error bounds on the output is as difficult as proving the
correctness of a loop without knowing whether it is tested at the top or bottom. Yet
many compilers, in practice, violate this basic need for predictability either by accident
or in a quest for ‘better’ code. This section lists common errors in past compilers.

Differing precision in registers and memory

Faulty implementations of common subexpressmn elimination can lead to trouble if
subexpressmns are computed to a higher precision than variables, a common tendency
in new floating-point chips. Consider the following sequence of statements:

s = dx/dy;
d := s — dx/dy;

The compiler may notice, when computing d, that the value of s is still lying around
in a register and can be used without loading. This optimization is valugble if the value
in s and the value in the register are, in fact, the same; but if the value in s is different,
owing to rounding from subexpression precision to storage precision, the substitution
would be incorrect.

In addition, common subexpression elimination may notice that dx/dy is used twice,
and thus store its value in a temporary location for reuse. If the temporary location
has less precision than the register in which the subexpression was evaluated, the wrong

1ich of this
Iress all of
1s. A more
btained by
hat 1s fast

ical entities

variables 1s
ble.

ble denotes
ogramming

> precision,

sult of that

will result

ithout such
proving the
ottom. Yet
by accident
ompilers.

o trouble if
n tendency
s!

ying around
if the value
is different,
substitution

used twice,
ary location
1, the wrong

COMPILER SUPPORT FOR FLOATING-POINT COMPUTATION 703

value will be used in the computation of d. This example 1s primarily of interest on
older machines; newer machines generally allow storage of the widest possible format.

Unwanted extra precision

Most languages supporting multiple precisions allow implementations to map more
than one source-language precision to the same machine precision. Doing so can make
certain codes malfunction and should only be done if the target machine is limited to
one precision. In particular, promoting all variables from single to double is 70t doing
the programmer a favour, even if the particular target machine ‘has plenty of memory’.
Saving space is not the only reason for using differing precisions; some programs
depend on, for instance, double being twice the precision of single, by making use of
the fact that the product of two single values can be represented exactly in a double
variable. Other programs may require a difference to be either zero or large compared
with round-off error; in these programs, a common practice 1s to round the difference
to single precision, flushing values near the double precision round-off error to zero.
Although few language standards insist that double must have greater precision than
single, such has been the case on virtually all compilers and machines in the past; the
capability should not be removed if the target machine easily supports it.

Algebraic transformations

Different source languages have different restrictions on when algebraic transform-
ations can be used in evaluating expressions. The rules of the language must not be
broken unless the transformed code has exactly the same execution semantics as the
untransformed code on the target machine, including the signals generated. Often the
semantics are different; for example, on some machines, such trivial rules as xxy = y*x
or 1.0#x = x do not hold. Using associativity or distributivity can often change a result
by changing the order in which rounding occurs; for example

(10.0E—30 + 10.0E30) — 10.0E30
and
10.0E—30 + (10.0E30 — 10.0E30)

will yield quite different results. Although many languages allow the compiler to apply
algebraically correct transformations to expressions for optimization purposes, the
programmer 1s usually best served by leaving the expressions alone.

Regardless of what the language allows, the groupmgs implied by parentheses should
never be changed. Carefully written code often requires associating operations in a
particular way to ensure, for instance, that overflow does not occur; parentheses are a
clear and concise way of showing the programmer’s intent.

Decimal to binary conversion

The first requirement of decimal to binary conversion is that identical results should
be obtained regardless of when the conversion occurs. Some existing systems yield three
different values for the same decimal constant, depending on whether the conversion is

704 C. FARNUM

done by the compiler, the assembler or the run-time input libraries; producing these
different values is unacceptable.

Secondly, it i1s important to realize that decimal to binary conversion under the IEEE
standard is an important operation in its own right, with the possibility of generating
signals and being affected by the current rounding mode. Thus, doing the conversion
at compile time is not always a trivial task; for instance, in a system fully supporting
dynamic rounding modes, two different versions of each inexact constant must be
maintained, each with possibly different signals generated on use.

If run-time signals from conversion are not wanted, they can be avoided by using
the particular language’s built-in facility for defining constants as static objects, e.g.,
FORTRAN’s DATA statement or Pascal’s CONST declarations. Signals generated while
converting these constants can be reported appropriately during compilation. The
programmer should also be able to specify rounding modes for these static constants.

Finally, the conversion routines themselves should not be written without a great
deal of thought, as the obvious algorithms are fraught with danger. Reference 4 provides
efficient and accurate algorithms for these conversions.

Type checking

Many new languages require strong type checking across separately compiled mod-
ules, supported by interfaces that provide the necessary type information. Compilers
for such languages should enforce the strong type checking by including consistency
checks to ensure that the same interfaces were used for separately compiled modules;
a depressingly large number of current compilers do not do so, usually with the excuse
that ‘the linker isn’t smart enough’. This excuse is invalid; a special linker pre-pass
can be written to do the consistency checks, or they can be trivially implemented at
run-time by including the test in the initialization code of each module.

Unfortunately, most older languages, including FORTRAN, provide no means for
type checking across separate modules. The resulting problems are by no means limited
to numeric code, but a particular instance occurs quite often due to a property of
certain floating-point formats on the VAX and IBM/370. On these machines, double
precision values can be chopped to single precision values by discarding the lower half
of the bit pattern. If a variable in memory is treated inconsistently as double precision
in some places and single precision in others, the program will usually give plausible
results. In FORTRAN, all parameters are passed by reference; thus, this problem
occurs any time a double value is passed to a procedure expecting a single value. If
such a program 1s executed on a machine whose formats do not have this property,
the program will malfunction; these bugs are notoriously difficult to find.

Because of the insidious nature of these types of bugs, and their frequent occurrence
in numerical code, as much type checking should be done as possible, regardless of
what the language requires or allows.

EVALUATION PRECISION OF SUBEXPRESSIONS

In languages that support multiple floating-point precisions, the arithmetic functions
s d
are typically overloaded, e.g., the symbol + might represent the function + or +

‘oducing these

ader the IEEE
of generating
the conversion
lly supporting
stant must be

nded by using
: objects, e.g.,
enerated while
ipilation. The
atic constants.
nthout a great
'nce 4 provides

:ompiled mod-
on. Compilers
ng consistency
piled modules;
vith the excuse
linker pre-pass
mplemented at
e.
2 no means for
y means limited
a property of
chines, double
s the lower half
ouble precision
- give plausible
, this problem
single value. If
this property,
ind.
lent occurrence
;, regardless of

“
o]

netic functions
s d

wction + or +

COMPILER SUPPORT FOR FLOATING-POINT COMPUTATION 705

depending on the context.* Deciding which function to use is often partially left to
the implementor; the choice should be considered carefully. Below, we discuss some

alternatives.

Strict evaluation

Most languages require that the precision used to evaluate subexpressions with an
overloaded operator be at least as wide as the widest operand. Strict evaluation uses
the narrowest precision allowed by the language. For example, the statement d := d

d s

+ s*s would store d + (s X s) in d. This strategy is easy to implement and the most
efficient on machines such as the VAX, whose machine instructions always yield results
of the same precision as the operands.

Unfortunately, strict evaluation is almost never what the programmer desires when
precisions are mixed within an expression. In the previous example, the extra precision
in the variable d is entirely wasted, as it is swamped by the rounding error introduced
by rounding s Xs to single precision. Another example is the evaluation of d := 7.0/3.0
*d: if 7.0/3.0 is evaluted to single precision, the extra precision of d will be destroyed.

A common counter to these arguments is that a ‘careful programmer’ writes

d := d + dble(s) * dble(s)

to ensure that the necessary precision is carried. These explicit conversions make the
code more portable, but at the expense of programmer effort and program legibility.
The intent of overloaded operators is to eliminate clutter; the strict evaluation strategy
forces such clutter back in.

Furthermore, using strict evaluation does not eliminate the portability problem,
since some compilers use other strategies. Thus, the same argument justifies insisting
that careful programmers should write explicit coercions for every expression, to ensure
that the same strategy is used on all machines. A better solution to this particular
portability problem is to leave the job to the compiler; given a compiler that makes
well documented decisions on unspecified portions of the language, it is a worthwhile
and relatively inexpensive task to write a source-to-source translator that removes most
of the implementation specific code. For example, this tool could easily replace d:=
d + s*s with d := d + dble(s)xdble(s).

Widest available

An easily implemented alternative to strict evaluation uses the widest precision
supported by hardware as the result precision of all overloaded operators. In a machine
where the widest format supported is also the fastest, e.g. many of the new micropro-
cessor floating-point chips, this strategy yields both the fastest speed and the most
accurate results.

* Decimal to binary conversion can also be considered as an overloaded operator in that the precision of the constant
should ideally depend on the context where it is used. Writing 0.3D0 instead of 0.3 is both tedious and easy to overlook;
it has the further disadvantage that a program cannot be upgraded from single to double precision simply by changing

the variable declarations.

706 C. FARNUM

Although often ideal, using the widest available format is troublesome in the following
two cases. On most machines, higher precisions imply execution times. This extra cost
comes both from the need to manipulate extra bits during the computation and from
the need to convert values from one precision to another. Whether or not the extra
precision is worth the higher execution time depends significantly on the context.
Three simple examples:

l. d:=d+ s*s
d d d s
Here, the higher cost of evaluating d + (s X s) instead of d + (s X 5) is certainly

worth while; otherwise, the extra precision of d is wasted.
. s =51 + s2 * (s3 + s4/sb)

Although

d d

d d
sngl(s; + s, X (s3 + 54/ 85))

may be a marginally better value than

s By s s
sp 53 X (53 F 54/ 55)

it would be hard to justify the added cost.
If the cost is justified, then the programmer should write

d:= sl + s2 * {s3 + s4/sb)

in order to take advantage of the extra precision. The widest needed strategy,
suggested below, uses single if the value is to be stored in s and double if it is
to be stored in d. .

.s:=s1+ 32
On a reasonable machine,

d s
sngl(s; + s,) =51 + 5,
here the extra expense is simply wasted.

Since most statements in typical code are of the simple form given in the third example,
the use of the widest available precision is often wasted; if the widest precision 1s
computationally expensive, then this strategy loses much of its appeal.

Secondly, in a system that supports infinitely many precisions, the ‘widest available’
format is non-existent. Such systems should use the ‘widest needed’ strategy outlined
below.

Widest needed

Strict evaluation eliminates much of the usefulness of overloaded operators by forcing
the programmer to use explicit type conversions whenever a benefit is to be gained from
varying precisions. Using the widest available precision wastes the extra computation in
frequently arising situations. A natural suggestion is to use the widest precision that is
‘needed’, i.e. that will be used in the local context.

More precisely, assigning precisions to an expression tree using the widest needed
strategy can be described as follows:

: following
extra cost
and from
the extra
e context.

; certainly

1 strategy,
ble if 1t 1s

1 example,
recision 18

t available’
ry outlined

by forcing
ained from
putation in
sion that 1s

est needed

COMPILER SUPPORT FOR FLOATING-POINT COMPUTATION 707

1. Assign tentative precisions using the strict evaluation strategy, in a bottom-up
traversal of the tree.

2. Using a top-down traversal of the tree, check each overloaded operator. Let the
tentative precision of the operator be p,, and the precision expected by the parent?
be p.. Assign the wider of p, and p, as the precision of the operator.

This strategy is superior to strict evaluation; if it is more efficient than the widest
available strategy for a particular target machine, then it should be the default. The
effects of the other strategies can be obtained by using explicit coercion functions in
those uncommon cases where they provide better results. Implementing the widest
needed strategy is more difficult than the other strategies, but not terribly so; a
modification to a UNIX FORTRAN compiler to implement the widest needed strategy
required about 80 man hours® in the context of a compiler that was doing optimizations
such as in-line expansions. When this strategy is designed into a compiler instead of
added after the fact, the time needed should decrease.

IMPROVING EFFICIENCY

The ideal goal of an optimizing compiler is to increase the efficiency of a program
without changing the output it produces. Unfortunately, the fact that floating-point
arithmetic is normally viewed as an approximation to real or complex arithmetic has
led some compiler writers to sacrifice semantics for the sake of speed because ‘one
approximation is as good as another’. But unknown approx1mat10ns are not as good as
known ones; it is possible to provide tight bounds on the error in many computatlons
by careful codmg that takes into account the differences between floating-point and
real arithmetic. Therefore, do what the programmer says.

This rule is vitally important; it is broken by several optimizations that are legal under
several language standards, but can be painful for the numerical analyst. Reorganizing
expressions to use fewer registers is a well understood and common technique. As
noted above, doing so can introduce anomalies since floating-point arithmetic fails to
honour some common identities. Many languages allow arbitrary application of
algebraic identities, regardless of their applicability to the machine arithmetic, so these
optimizations do not fall under the heading of ‘avoid at all costs’; but parentheses, at
the very least, should be respected. Experienced programmers do not introduce
parentheses without a good reason; inexperienced programmers do not run their
programs often enough for such optimizations to be worth the effort.

Other optimization techniques involve moving computations, e.g. moving code out
of loops, storing common subexpressions or evaluating constant arithmetic at compile
time. Floating-point arithmetic can often have side effects aside from computing a
result, e.g. setting flags or trapping.] If code is to be moved, it is important to ensure
both that no spurious side-effects are introduced at the new location, and that the
correct side-effects occur at the old location.

t The result of the operator will be either used in a context expecting a fixed precision (e.g. as‘algnment to a variable
or as a parameter) or as an operand of an overloaded operator. In the former case, the expected precision is defined
by the language; in the latter, it is the precision assigned to the parent operator.

Recall that the decimal to binary conversion implicit in the appearance of a numeric literal is a full- fledged operation
under the IEEE standard, and can generate signals and/or be affected by rounding modes.

708 C. FARNUM

The optimizations listed above are dangerous, but floating-point code presents several
opportunities for optimization. The most important ones are listed below.

A simple local improvement removes unnecessary coercions. When a cautious pro-
grammer has written

«d := d + dble(s)=dble(s}

and the target machine supports a double precision product of two single precision
numbers, there is no need to penalize the programmer with the extra coercions. The
FORTRAN standard considers this example so important that it provides a special
function enabling the programmer to perform this optimization at the source level;
such a simple peephole optimization should be handled automatically by the compiler.
Although it is simple, this optimization is quite important; a multiplication followed
by an addition is the most common combination of operations in floating-point code.

A second important optimization deals with vector hardware. Machines with vector
instructions cater to numeric processing, and any compiler that fails to vectorize loops
will fall into disuse. Unfortunately, many compilers refuse to vectorize any loop with
an embedded IF statement. Vectorizing many such loops is possible, albeit difficult,
on machines with a select vector operation that chooses one of two possible results
based on a boolean condition; the select operation can be used for embedded IF
statements such as

if (x{i] = 0) then

y =1
else

y o= sin{x[il)/x[i]
endif

that are used to remove singularities from certain functions.

Branch prediction is another area where great improvement can be gained. Much of
the branching in floating-point codes exists solely for the purpose of handling excep-
tional cases; the jump only needs to be taken a very small percentage of the time. This
situation is ideal for branch prediction optimizations. Profiling information appears to
be the best way to decide which branch is more likely, but a simpler implementation
can provide a notation for the programmer to make the prediction.

Finally, division is almost always much slower than multiplication. Replacing division
with multiplication is done by many programmers as a matter of habit; it is certainly
within the compiler’s jurisdiction to replace division by a constant with multiplication
provided the reciprocal 1s exact and the multiplication has identical effects.

CONCLUSION

Floating-point programs must be faithfully translated if they are to produce meaningful
results. The programmer must be able to predict the operations that will be executed,
including all explicit and implicit rounding, in order to make useful statements about
the accuracy of the result. To make this prediction possible, the compiler writer must
often provide details that are missing in the language specification and forego common
‘optimizations’.

averal

3 pro-

:c1s101
;5. The
special
level;
npiler.
llowed
t code.
vector
e loops
yp with
ifficult,
results

ided IF

Much of
g excep-
ne. This
ypears to
ientation

r diviston
certainly
iplication

eaningful
executed,
nts about
-iter must

)y common

COMPILER SUPPORT FOR FLOATING-POINT COMPUTATION 709

By providing appropriate support tools, such as a source-to-source translator that
inserts explicit precision conversions and an optimizer intended for floating-point code,
an implementation can regain some of the portability and speed sacrificed in making a
predictable compiler; but even without these tools, a compiler whose output produces
correct results slowly is preferable to one that quickly produces misleading numbers.

ACKNOWLEDGEMENTS

This paper is primarily based on the experience of W. Kahan, transmitted via lectures
and personal conversations at the University of California, Berkeley. Richard James
provided a numerical analyst’s wish list of what compiler writers ought to know that
was useful in selecting key ideas. David Hough and the anonymous referees of Software
provided helpful comments on the content and organization of earlier drafts of the
paper. The author is supported in part by a U.S. NSF Graduate Fellowship and the
Defense Advanced Research Projects Agency (DoD), Arpa Order No. 4871, monitored
by Space and Naval Warfare Systems Command under Contract N00039-84-C-0089.

REFERENCES

1. W. Kahan and J. T. Coonen, ‘The near orthogonality of syntax, semantics, and diagnostics in numerical
programming environments’, in The Relationship Between Numerical Computation And Programming
Languages, North-Holland Publishing Company, 1982, pp. 103-115.

2 IEEE Standard 754-1985 for Binary Floating-point Arithmetic, IEEE, 1985. Reprinted in SIGPLAN,
22, (2), 9-25 (1987) 1985.

3. W. G. Cody et al., ‘A proposed radix- and word-length-independent standard for floating-point
arithmetic’, IEEE Micro, 4, (4), 86-100 (1984).

4. Jerome T. Coonen, ‘Contributions to a proposed standard for binary floating-point arithmetic’, PhD
Thesis, University of California, Berkeley, 1984.

5. Robert P. Corbett, ‘Enhanced arithmetic for Fortran’, SIGPLAN, 17, (12), 41-48 (1982).

