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SUMMARY

Code generators based on bottom-up rewrite systems (BURS) are automatically generated from machine-
description grammars. They produce locally optimal code for expression trees, but their tables are large
and require compile-time interpretation. This paper describes a program that compiles BURS tables into
a combination of hard code and data. Hard-coding exposed important opportunities for compression
that were previously hidden in the tables, so the hard-coded code generators are not just faster but also
significantly smaller than their predecessors. A VAX code generator takes 21.4Kbytes and identifies
optimal assembly code in about 50 VAX instructions per node.
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INTRODUCTION

BURS code generators produce locally optimal code for expression trees. They walk
a tree bottom-up and label each node with a numeric state that identifies the optimal
assembler string to generate for that node. The states are computed by table look-
up, in which the indices are the node’s operator and the states already computed
for the node’s children. No dynamic programming is needed at compile time. Once
all nodes have been labelled, a top-down tree-walk uses the states to emit code.
Complex instructions can cover multiple nodes, so the states also tell which nodes
to skip when emitting code.

The tables are generated from a machine-description grammar labelled with addi-
tive static costs. Table compaction is vital: for the VAX, the uncompacted data for
each binary operator would take 2Mbytes. Even with compaction, a typical BURS
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code generator for the VAX takes over 43Kbytes, and further reductions are gener-
ally regarded as desirable. Compaction complicates table interpretation: what is
logically a simple three-dimensional array access ends up taking about 40 VAX
instructions.

This paper shows that it is better to represent BURS tables with a combination
of hard code and data. A table encoder has been written, tested on complete
machine-description grammars for the VAX and 68000, and integrated into a retar-
getable C compiler. Predictably, the hard-coded generator is faster. A typical compi-
lation with interpreted tables took 49 VAX instructions/node for labelling and 188
more to identify the code to output. With hard code, these dropped to 13 and 35.

Less predictably, hard-coding saves space. The smallest hard-coded BURS code
generator for the VAX takes 21.4Kbytes, less than half of its interpreted predecessor.
Hard-coding exposed important opportunities for compression that were previously
hidden in the tables, and it allowed tailoring of encodings to the values at hand.
The table encoder offers options that trade space for time. The paper also describes
some promising optimizations that turn out to be ineffective.

BACKGROUND

This paper is about representing BURS tables, not generating them, so readers
interested in the latter should see the literature. Some papers describe basic tree-
matchers, l-4 and others describe their adaptation to code generation. 5-7 Briefly, the
generator manipulates structures like LR(0) items, except that they record partial
tree matches and also the cost of the associated code. The generator uses dynamic
programming to compute optimal matches. The generator takes about 2.4G VAX
instructions to build tables for optimal VAX code generation. A deeper understand-
ing of table generation is not a prerequisite here, because the table encoder follows
the table generator. A few modest changes were made to the table generator, but
virtually all of the techniques that ultimately proved important are performed by a
simple post-processor.

Code generators may assume that all nodes have at most two children. The table
generator produces one two-dimensional table for each binary operator. At each
binary node, a state is computed by indexing the appropriate table using the states
already computed for the node’s two children. Unary operators can be viewed as
degenerate binary operators: a one-dimensional table replaces the two-dimensional
one, and it is indexed by the state already computed for the node’s lone child. Leaf
operators can be viewed as degenerate unary operators: a zero-dimensional table—
that is, a constant—replaces the one-dimensional table, so no look-up is needed. In
other words, states labelling leaves are fixed by their operator.

Figure 1 gives ANSI C code to interpret uncompressed tables and label the tree
at address p. Each descriptor structure records the arity, table, and number of table
rows for one operator. When developing a new machine-description grammar,
debugging code may be added to confirm that the operator and the row and column
indices are legal. Once the grammar is complete, such code is superfluous, because
the front end creates only valid trees, even if the source code contains errors.

Uncompressed tables are useful only for explanatory purposes. Typical tables
driving a VAX code generator use about a thousand states, so the naïve represen-
tation for each two-dimensional table would require about a million 16-bit words.
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label(struct node *p) {

int k;

struct descriptor *d = descriptors [p->op] ;

switch (d->arity) {

case 0: k = O; break;

case 1: k = label(p->left); break;

case 2: k = label(p->left)*d->rowwidth + label(p->right); break

}

return p->state = d->table[k];

}

Figure 1. An interpreted labeller

In practice, however, most such tables would have only a few distinct rows and
columns, so all BURS table builders have eliminated duplicates during table gener-
ation. This operation leaves a much smaller table, which is indexed indirectly via a
vector of indices called an index map. 3 Each index map accepts a state and produces
an index for the compressed table. With index maps, the expression in the binary
case from Figure 1 becomes

d->lmap [label (p->left )]*d->rowidth + d->rmap [label (p->right )]

Figure 2 illustrates the introduction of index maps.
After this transformation, the index maps take most of the space. Different BURS

table generators 5 have compressed them differently. One of the published code
generators packs the elements of each index map into the smallest acceptable bit
field whose length is a power of two. For example, if an index map stores row
indices of a table with only six rows, then each index map element is stored in four
bits. The values would fit in three bits, but three-bit chunks would cross byte
boundaries and thus complicate random access to the index maps. Even with power-
of-two field widths, unpacking the index maps complicates the table interpreter.

The base code generator for the current research  6 stores all index map elements
in bytes (no machine-description grammar has produced a table with more than 256
distinct rows or columns) and saves space by overlaying index maps. When the table
generator produces a new index map, it compares it with all existing maps. If it finds

Figure 2. Remove duplicate rows and columns. Access compressed table via index maps
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one that differs in fewer than, say, four positions, then the two descriptors are made
to share the same index map. Each of the (up to) two index maps in each descriptor
is augmented with a list of (up to) four exceptions, each of which is a state–index
pair. The table interpreter scans the exception list before reading the index map. If
it finds the state in the exception list, it uses the paired index instead of the value
in the index map. This scan complicates the table interpreter, but it can reduce the
number of index maps by over 20 per cent.

Once the labelling pass finishes, an output pass walks the tree top-down. It
propagates down the tree goal symbols, which are numbers representing non-ter-
minals in the machine-description grammar. These grammars are roughly analogous
to a grammar for a machine’s assembly language, so typical non-terminals define
instructions and addressing modes. For example, the rule

instruction → sub13 src, src, dst

uses non-terminals instruction, src and dst to define a subtraction instruction. Each
rule comes with a tree pattern that describes the semantics of the instruction in terms
of the operators in the compiler’s intermediate language. The BURS tables are
generated from these tree patterns.

The state that labels each node encodes the set of non-terminals that match the
subtree rooted at that node. A state represents a set because some operators may
be implemented several ways, depending on context. For example, the code gener-
ator may have a choice for some additions: to use an ordinary addition instruction
or to fold the addition into the address calculation of another instruction. Thus each
node’s state specifies several assembler strings, and the goal symbol selects one of
them.

HARD-CODING THE LABELLING PASS

The hard-coded labeller uses packing, exception lists and other techniques as well.
As a first step, it replaces the descriptors by jumping to code tailored to the operator.
Figure 3 gives a hard-coded labeller with an initial case for the subtraction operator.
The code computes the row and column indices ( l and r, respectively), which it then
uses to access the state table for subtraction. The multiplication that supports the
table access is placed with the reference to the index map so that it may be avoided
when an exception is found (this particular case has no exceptions for the left
subtree). An option that performed all multiplications at compile–compile time (by,
for example, multiplying each entry in xmap8 by four) was abandoned when it was
determined to reduce the number of instructions executed by the code generators
by less than 2 per cent on the VAX. On machines without multipliers, the encoder
might be changed to restore this option or to implement the multiplications with
shifts and additions.

The original BURS table generator was modified to enumerate states so that states
in the table for an operator fall into a compact range. The range for the subtraction
operator starts at 900, so the BURS table builder subtracts 900 from all elements in
the table, and the labeller adds it back in.

This modification alone allows all but one table to use eight bits per element
instead of sixteen; the table for Plus remains as a large table because there are
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label (struct node *p) {

int l, r;

switch (p->op) {

. . .

case 156: /* sub */

l = label (p->left)

l = 4*xmap8[l];

r = label(p->right

switch (r) {

case 2: r = 0; break; /*

case 5: r = 2; break; /*

default: r = xmap2[r]; break; /*

}

l = sub_table[l + r] + 900; /*

break;

. . .

}

return p->state = 1;

}

/*label left sub-tree */

/*map state to row index */

/*label right sub-tree */

/*implement exceptions . . . */

. . . map state 2 to index 0 */

. . . map state 5 to index 2 */

. . . otherwise use index map */

fetch the final state */

Figure 3. A hard-coded labeller

approximately 450 different ways to do addition optimally on the VAX, depending
on context. Large tables are converted to small tables using a heuristic. The rows
and columns are permuted so that infrequently occurring elements migrate to one
corner; index maps preadjusted to follow the permutation. The table is divided into
three rectangular slabs so that each slab contains no more than 256 distinct elements,
and so the number of elements common between slabs is minimized. States are
enumerated so that states in a slab fall into a compact range. The final state is
determined by indexing the table and then using a short if–then–else chain to
determine the slab and thus the value to add back in. Figure 4 illustrates the division
of a large state table into slabs.

Figure 4. Permute and divide large state tables into slabs of 256 or fewer distinct values. Replace one
range of 16-bit codes with several ranges of 8-bit codes

Next, degenerate cases are optimized. If the table has only one row, then | must
be zero, so the assignments to | are dropped; the recursive call is retained, but the
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assignment of the return value and the switch are not. A similar optimization holds
for assignments to r when a table has only one column. In both cases, the correspond-
ing index map can hold only zeros, so it is deleted. These optimizations collaborate
to make unary cases look like the binary case above, without the r. Leaf tables have
only one row and column, so their cases end up as a single assignment, of a constant
to | .

Unary cases (and binary cases that degenerate to unary cases) are optimized still
further. The transformations above would have them end with something like

l = xmap7 [l] ; /* elements between 0 and m */

l = indir_table[l] + 720; /* elements between 0 and n, n <= m */

This code is improved by replacing the index map with one that composes the
original one (here xmap7 ) with the operator’s state table (here indir_table ). Then the
table and the reference to it are deleted. Composition does not widen xmap7 because
the state enumeration order ensures that the values in indir_table form a compact
range. Figure 5 illustrates this composition.

Degeneracies make the code much smaller than the subtraction case suggests. For
the tested VAX description, 11 of the 27 unary tables and 23 of the 53 binary tables
have only one element, and 9 of the remaining binary tables have only one row or
column. Moreover, most exception lists are empty, and all tables with only one row
or column vanish. As a result, the code above is actually smaller than the descriptors
that it replaces. Of course, it is also faster than the interpreter.

Finally, an encoder option controls a modest time–space trade-off. The integer
codes that represent the operators are ordered so that the leaves come first, then
the unary operators, and finally the binary operators. The option moves the labeller’s
recursive calls out of the cases to before the switch:

if (p->op >= MINBINARY) {

l = label (p->left);

r = label (p->right );

} else if (p->op >= MINUNARY)

l = label (p->left );

The modest increase in time is due to the comparisons and branches that implement
the if–then–else chain above.

Figure 5. When a state table has only one row or column, compose it with its index map
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HARD-CODING THE OUTPUT PASS

In interpretive BURS code generators, the output pass starts by using the goal
symbol to index a table and fetch an index map and possibly an exception list, both
just like those used during labelling. It then indexes these structures using the node’s
state number. The result is the number of a grammar rule with the same left-hand
side as the goal symbol. The rule in turn specifies the assembler template, the
registers to allocate and free, the descendants to visit and the goal symbols to pass
down to those recursive calls.

The hard-coded code generator replaces these indexing operations with two
switches. The first switch replaces the first table with a switch on the goal symbol.
The second switch includes one case for each rule. The skeletal output routine
appears in Figure 6. The cases in the first switch compute the rule number in much
the same way that the labeller computes a state table index. A nested switch
implements the exception list, if there is one, and its default case uses an index map.
Exceptions can branch directly into the second switch because their values for
rulenumber are constant.

The cases in the last switch make the recursive calls, generate the output, and
allocate and free registers. A typical case might be

opcode = “sub13”;

output (p->left, 33); /* 33 is goalsym for left child */

output (p->right, 33) ; /* 33 is goalsym for right child */

free any registers allocated to the children

allocate and use any registers needed by the destination for the current node

emit opcode and the addressing strings from the children and the destination

Many of these cases share suffixes, so careful cross-jumping is performed as they
are generated, and steps are taken to improve opportunities for cross-jumping. For
example, the variable opcode above is used so that the cases for the other binary
operators can be implemented by assigning their own value to opcode and jumping
to the second line above.

PACKING THE INDEX MAPS

Once the index maps for both the labeller and the output pass have been built and
overlaid, the remaining maps are packed. Earlier techniques 5 packed each map
independently, and used a totally different scheme for the output pass. The encoder
packs all index maps into a single vector, in which the elements are C structures of
bit fields, one field per map. For example, suppose that a code generator needs
three maps, which index rows or columns of 6, 16 and 3 elements, respectively. The
encoder would thus represent them as shown in Figure 7. Expressions such as the
xmap2[r] in the case for subtraction are replaced with xmap[r] .f2. The random access
is not across a packed dimension, so there is no need to round field sizes up to a
power of two. Figure 8 illustrates index-map packing.

For the VAX description used in this research, the table generator starts with 209
different index maps. Using exception lists, overlaying and discarding index maps
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output (p, goal)

struct node *p;

{

switch (goal) { /* compute rulenumber from goal and p->state */

case 1:

switch (p->state) {

case 23: goto R43;

case 26: goto R38;

default: rulenumber = xmap17[p->state] + 19; break;

}

break;

. . .

}

switch (rulenumber) {

case 1: R1: /* generate code for rule number 1 */

. . .

}

}

Figure 6. Skeletal output routine

struct {

unsigned int f1:3; /* xmap1: range is 0..5 */

unsigned int f2:4; /* xmap2: range is 0..15 */

unsigned int f3:2; /* xmap3: range is 0..2 */

} xmap[NSTATES] = {

{0, 4, 2}, /* state 0 */

{5, 1, 1}, /* state 1 */

. . .

};
Figure 7. A packed index map

Figure 8. Transpose index maps and pack them into a single structure
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used in degenerate cases retains only 38 maps. Each map is 963 bytes, for a total of
36,594 bytes. Packing the maps into structures yields 963 20-byte structures—that
is, the encoder packs 38 map elements, one from each map, into 20 bytes—for a
total of 19,260 bytes.

To translate xmap[r].f2, compilers emit code to multiply r by the width of a single
element. For example, a map structure of 20 bytes requires multiplying r by 20. To
reduce costs, the encoder actually divides the map structures into one-word (four-
byte) chunks. For example, the 20-byte or 5-word structure used for the VAX
compiler is actually represented by five one-word structures called planks. It replaces
what would otherwise be a multiplication by 20 with one by 4, which may be realized
with a shift or, on some machines, absorbed into an address calculation. Figure 9
illustrates this transformation.

Once the structure initializer in Figure 7 was generated, it was observed that the
rows were not unique. The redundancy can be exploited in two distinct ways. One
option exploits these redundancies at a low level, late in the encoder. This option
directs the encoder to store only the distinct map structures, and to access them
indirectly through an indirection vector, which accepts a state and produces an index
into the list of distinct structures. For example, the VAX map has five planks, with
227, 148, 116, 178 and 63 distinct values. Thus the planked structure can be rep-
resented with 732 four-byte structures plus five indirection vectors of 963 bytes each,
for a total of 7743 bytes, down from the original 36,594. Indices fit in one byte
because each plank has fewer than 256 distinct values. Indeed, to keep the indices
to a byte, the encoder breaks an almost-full plank and moves on to the next one
when adding another field would give the plank more than 256 distinct values. It
will resort, however, to 16-bit indices before it will leave a plank more than a third
empty; more experience is needed to evaluate this heuristic. This form of indirection
is called late because the encoder introduces it late (after planking) and because the
table interpreter executes it late (immediately before the value is needed).

An independent option exploits the redundancy at a high level, via a modification
to the original table generator. A state number is used in three places: twice in the
labeller, to characterize a left or right subtree (see Figure 3 ), and once in the output
pass, to specify a grammar rule (see Figure 6 ). No two states behave identically in
all three places, but two states may cause identical labeller behaviour when they
label a child. For example, the operators ‘<’ and ‘>’ need different state numbers
because the output routine needs to emit slightly different strings for them, but the
labeller treats these states the same because the overall code templates are so similar.
The modified table generator detects such conditions and produces three sets of
index maps: two for the labellers  one each for mapping the labels from left and

Figure 9. Divide the single-structure map of n -byte elements into [n/4] maps of 4-byte elements
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Table I.

Indirection Trade-off Space Instructions executed
label output total label output total

code data code data

none
early
late
both
none
early
late
both

space
space
space
space
time
time
time
time

2912
2816
3208
3060
4292
4476
4604
4808

27,700
16,020
16,188
15,036
27,700
16,020
16,188
15,036

1740
1784
2004
2032
1740
1784
2004
2032

0
7828

0
4880

0
7828

0
4880

32,352
28,448
21,400
25,008
33,732
30,108
22,796
26,756

16·8 35·4 52·2
16·7 37·4 54·1
17·5 36·8 54·3
17·2 38·8 56·0
13·4 35·4 48·8
13·3 37·4 50·7
14·1 36·8 50·9
13·9 38·8 52·7

right sub-trees—and one for the output routine. Each map holds only distinct values,
and each comes with its own indirection vector. This form of indirection is called
early, because the encoder may arrange to execute it earlier: the indirection is placed
with the recursive calls, which may be done before the switch.

MEASUREMENTS

The encoder can produce eight variations on the same code generator. It can use
early indirection, late indirection, both or neither. Independently, it can put the
labeller’s recursive calls before the switch or down in the individual cases. Table I
gives the sizes (in bytes) and the average number of VAX instructions executed per
node.

Thus the smallest version uses late indirection and one set of recursive calls before
the switch, and the fastest version uses no indirection and calls down in the individual
cases. The difference between them is about 12Kbytes, which could be important in
the presence of limited memory, and about seven instructions per node, which is
probably insignificant alongside the rest of the compiler. By comparison, a subopti-
mal greedy code generator for the VAX takes 10Kbytes.

Different specifications, even for the same machine, give different results, but the
general patterns above remain. For example, the eight variants of the 68000 code
generator hosted on the VAX are about 25 per cent smaller; the smallest still uses
late indirection and one set of recursive calls before the switch. Nor does switching
to a RISC host change matters. On the MIPS R3000, code sizes increase 30–50 per
cent, but data sizes change little and continue to dominate the figures; late indirection
with factored calls remains the smallest variation.

Early indirection was expected to save the most space, because it was closely
connected with the internals of the table generation algorithms. It turned out,
however, that late indirection’s naive post-processor performs better. One reason
may be that late indirection operates on planks, which are narrower and thus take
on fewer distinct values. Another may be that late indirection produces a single set
of planked index maps and their associated indirection vectors. Early indirection
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produces three sets—one for the output pass and two for the labeller—with redun-
dancy and fragmentation that cancel the advantage of their superior data.

The table omits the costs of building the tree in the first place and all costs from
the second switch of the output pass, except for the recursive calls. These costs are
omitted because they are constant across the eight versions and indeed are incurred
by even non-BURS code generators. These costs are, however, not insignificant—
indeed, they dominate the figures above. Code to lay down the output characters
almost doubles the total sizes above, and it more than doubles the instruction counts.

Typical C compilers yield good object code for the hard-coded code generators.
Changing the encoder to implement the hard-coded code generators in assembly
code 8 might save a few instructions per node but probably not enough to materially
improve the overall compilation rate. Changing the emitted C code, however, might
be considered in a few cases. If the compiler does not assign crucial locals and
formals to registers, then the encoder should use register declarations. If the compiler
uses a slow calling convention, then standard techniques might be used to eliminate
the recursion from the labeller and output pass. If the compiler rejects large switches
or implements them badly, then it may be necessary to divide them.

The encoder is implemented as an appendage to the table generator for an earlier,
interpretive BURS code generator. Its implementation is straightforward. It adds
less than 10 per cent to the cost of generating the initial tables, so tuning seemed
pointless. It takes the same amount of time to produce all eight versions of the hard-
coded code generator.

DISCUSSION

BURS code generators run fast and yield locally optimal code for trees. The table
generation algorithms are neither the simplest nor the least costly of the current
generation of automatically produced code generators, but only one drawback has
been exposed after compiler-generation time: the size of the code generators. Our
table encoder largely solves this problem. It brings BURS code generators within a
few thousand bytes of competing techniques, and it does so without sacrificing speed.
Indeed, direct measurements show that the code generators above are smaller and
faster than all previously published BURS code generators. The key is a selective
use of hard code.

Late binding, flexibility and uniform treatment of operators make interpreters
attractive during development and debugging. Once the tables are right, however,
hard code is faster and easier to tailor to the data in hand. Although large switch
statements with many branches interfere with optimizers, pipelines and caches, and
the mere sizes can stress some compilers, eliminating a level of interpretation can
offer considerable compensation.

The generated code, though not intended for human consumption, is actually
easier to read than the original tables, and it should be easier to extend if the pattern
matcher is used in different applications. For example, exception lists stand out more
clearly as switches than as lists of numbers submerged in a huge initialized data
structure, and the outer switches clearly delimit the handling of the individual
operators.

The generated code benefits from many compiler optimizations: global dead code
elimination, loop unrolling, cross-jumping, code hoisting and careful implementation
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of switches. Regrettably, it was necessary to implement at least some of these in the
encoder to compensate for some host compilers.

The encoder uses a few simple, general tricks:

1. Eliminate arrays that hold only a single value.
2. Eliminate replicated rows and columns. Access the reduced array indirectly via

a vector of indices.
3. Use exception lists to eliminate nearly identical rows and columns. Compile

them into hard code so that they impose no execution overhead when they are
unneeded.

4. Pack multiple equal-length arrays of small numbers into a single structure to
waste fewer bits.

5. Transpose tables to avoid random access along a packed dimension.
6. When tables are indexed solely by values from other tables, permute rows and

columns to expose more regularities.

An interpreter could use some of the transformations, but it would have to
accommodate more representations and thus incur more overhead. Hard code makes
the overhead vanish.

These tricks apply to more than just BURS tables, and the hard code generated
to support them resembles that generated for very different compiler tables. 8-10 It
is thus perhaps time for a general-purpose table encoder, which could accept tables
and automatically perform some of the transformations above.
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