
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

INCREMENTAL CHECKPOINTING WITH APPLICATION TO
DISTRIBUTED DISCRETE EVENT SIMULATION

Thomas Huining Feng

Edward A. Lee

Center for Hybrid and Embedded Software Systems (CHESS)

Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

Berkeley, CA 94720, U.S.A.

ABSTRACT

Checkpointing is widely used in robust fault-tolerant appli-

cations. We present an efficient incremental checkpointing

mechanism. It requires to record only the state changes

and not the complete state. After the creation of a check-

point, state changes are logged incrementally as records

in memory, with which an application can spontaneously

roll back later. This incrementalism allows us to imple-

ment checkpointing with high performance. Only small

constant time is required for checkpoint creation and state

recording. Rollback requires linear time in the number

of recorded state changes, which is bounded by the num-

ber of state variables times the number of checkpoints.

We implement a Java source transformer that automatically

converts an existing application into a behavior-preserving

one with checkpointing functionality. This transformation

is application-independent and application-transparent. A

wide range of applications can benefit from this technique.

Currently, it has been used for distributed discrete event

simulation using the Time Warp technique.

1 INTRODUCTION

Checkpointing is a recovery technique widely used in robust

fault-tolerant applications. For example, many contempo-

rary database applications have built-in recovery mecha-

nisms, with which they can recover data from unintended

destructive operations, storage failure, or program crash.

Safety-critical applications also employ recovery mecha-

nisms to ensure that once unexpected situations occur, they

can still restore sensible states and continue to function cor-

rectly. These applications create checkpoints during normal

execution. Those checkpoints record the information neces-

sary to recover the states in case of certain types of failure.

The types of tolerable failure are very application-dependent.

For example, document editing applications may attempt to

tolerate software bugs, but they generally assume protected

memory segments and disks to be reliable storage; database

applications may tolerate some disk failure by using Re-

dundant Array of Independent/Inexpensive Disks (RAID)

or system backups; safety-critical applications do not rely

on any single type of storage, but make use of various

kinds of storage devices to ensure maximum fault-tolerance

capability.

We develop an incremental checkpointing mechanism

here. It does not require to take snapshots of the complete ex-

ecution state. The applications can execute asynchronously

with their checkpointing systems. The application states are

changed during the execution. Every independent change is

recorded in the most recent checkpoint at a small constant

cost. Later, the applications can spontaneously restore their

state by rolling back to the checkpoints.

We have employed this incremental checkpointing

mechanism in our modeling and simulation environment,

Ptolemy II (Brooks et al. 2005). Instead of restricting the

mechanism to be applicable for Ptolemy II only, we view

this use case as a concrete example of a rich set of poten-

tial applications. Therefore, application-independence is an

important property that we try to pursue. Besides this, our

implementation is also application-transparent so that ap-

plication designers need not consider low-level checkpoint-

ing details. To achieve these goals, we take the program

refactoring (Fowler 1999) approach, and invent a source

to source transformer. It accepts the source of existing

applications, and outputs behavior-preserving applications

with extra functions for checkpointing. Very little human

interaction is required in this process.

The rest of the paper is organized as follows: Section

2 offers an overview of our checkpointing strategy. In Sec-

tion 3, the source transformation is discussed. In Section

4, operations for checkpoint management are provided so

that the applications can spontaneously interact with their

checkpointing systems at run time. Our simulation environ-

10041-4244-0501-7/06/$20.00 ©2006 IEEE



Feng and Lee

ment is presented in Section 5 as an application. Related

work is studied in Section 6. Section 7 concludes this work.

2 OVERVIEW OF THE CHECKPOINTING
STRATEGY

Application-independence and application-transparency

(Strom and Yemini 1985) are two important goals of our

checkpointing strategy:

• Application-independence: We make no assump-

tion on the nature of the target applications. The

analysis and transformation method is generally

applicable to the source of many existing applica-

tions. Currently, we have an implementation for

arbitrary Java programs, but other languages can

also be supported using similar techniques.

• Application-transparency: We try to free applica-

tion designers from considering low-level check-

pointing details. In some other checkpointing ap-

proaches (Lawall and Muller 2000), the designers

are required to manually construct their applica-

tions in a special way for checkpointing. This is

not required in our approach. A program analyzer

is implemented to automatically extract state infor-

mation. With this information, behavior-preserving

applications can be generated with the program

transformer.

2.1 The Problem

State recovery is commonly required in applications. How-

ever, there is no uniform definition of application state.

General-purpose applications usually consider the contents

of their accessible memory as their state, because this mem-

ory contains the objects that they operate on. For example,

simulation environments store the run-time model state in

memory, and document editing applications store documents

in memory when they are edited by the users. For these

applications, it is sufficient to record the history of memory

writes in the checkpoints.

Our research aims to develop an efficient checkpointing

mechanism for the above-described applications. We do not

try to handle the state of external devices. For checkpointing

of these states, we fall back to the traditional approach by

requiring the programmers to provide extra methods.

We further assume that the affected applications them-

selves issue checkpoint and rollback requests. Our simu-

lation environment is one such example. It simulates dis-

tributed discrete event models using Time Warp (Jefferson

1985). It requests to roll back its own state when a causality

conflict is detected. Document editing applications can be

another example. They allow users to undo some editing

operations. Under this assumption of spontaneity, we do not

address the problem caused by arbitrary unexpected crash

that completely invalidates the running application.

2.2 A Program Analysis and Transformation Approach

The state needs to be discovered before a mechanism can

be provided to record it. Because we define the state to be

the contents of application-accessible memory, we can use

a program analyzer that statically analyzes memory access

in the source code. For applications written in object-

oriented languages such as Java, the state is accessed by

means of object fields. We currently only consider private

fields as application state. This assumption is not necessary

for the correctness of this technique, but it allows us to

simplify the analyzer design. Because private fields can

only be modified in the Java files that define them, the

analyzer can precisely detect all the modification sites in

those files. (Public fields and protected fields can also be

supported, either by extending the analyzer to analyze all

the Java files, or by transforming them into private fields

with get/set methods generated.)

At run time, the checkpointing system maintains the

application state once a checkpoint is created. We consider

the checkpointing system’s private memory as a stable stor-

age invisible from the application itself. State changes are

logged in that memory.

Extra code is required to log the changes. This code is

scattered throughout the application. It is hard and error-

prone for the programmers themselves to write this code

by hand. Therefore, we develop a program transformer that

exploits the information from the analyzer, and automatically

inserts this extra code at the program points where state is

change.

3 SOURCE TRANSFORMATION

In this section, a program transformation method is presented

for Java. It automatically inserts checkpointing code at the

program points where state can be changed at run time. This

is essentially an aspect-oriented programming (Kiczales et al.

1997) approach, as we define the aspects and also provide

a tool to weave those aspects with the target programs.

Though we currently assume that the applications are

written in Java, our method is generally applicable to other

languages with some assumptions. Specifically, we assume

no pointer aliasing, no pointer arithmetic, and automatic

memory management (available in some libraries such as

Boehm’s garbage collector — see Boehm and Demers 1997).

These assumptions may be met by some C++ applications.

3.1 Analysis

Our method starts with an analysis phase. The analyzer

performs an intra-procedural analysis on all the Java classes

1005



Feng and Lee

that need checkpointing. It extracts the following informa-

tion:

1. All the private fields of those classes and their

types.

2. All the operations in the code that can modify the

private fields.

3. The class hierarchy. (Not all private fields are

explicitly defined in the classes. Some of them

may be implicitly inherited from superclasses.)

There are commonalities between this analyzer and the

a Java compiler. In a Java compiler, information types 1

and 3 are obtained from the type checker, while type 2 is

examined by the scoping and visibility checker.

3.2 Assignment Transformation

Assignments may modify program state. Intuitive exam-

ples of assignment transformations are given in Table 1.

The assignments in the original source are transformed to

calls of auxiliary methods. In Example 1, where a is a

private field of type int, the assignment a = b becomes

a call to $ASSIGN$a with argument b. $ASSIGN$a is

automatically generated for the current class:

private int $ASSIGN$a(int newValue) {
... // Record the old value of a.
return a = newValue;

}

This method records the old value of a, assigns the

new value to it, and then returns the new value. It precisely

models the observable effect of an assignment expression

in Java.

For object assignments, the transformer generates the

same auxiliary methods. This means that only object pointers

are stored for the checkpoints. (Object assignments in Java

are essentially pointer assignments.) Cloning or deep copy is

not necessary. Therefore, the cost for logging an assignment

is always a small constant, no matter what type the field

has.

In operational semantics, the following rule formally

defines Java assignments:

< e,σ >⇓ n
< x = e,σ >⇓ σ [x := n]

(1)

According to this rule, if expression e is evaluated to number

n in the abstract program state σ , then the new state after

executing x = e is the same as σ , except that the value of

variable x becomes n (denoted by σ [x := n]).
In the transformed code, we can imagine that a check-

point is used to record the change history. We may use

Table 1: Examples of Assignment Transformations.

1 a = b;
1’ $ASSIGN$a(b);
2 f(a = b);
2’ f($ASSIGN$a(b));
3 f(..).a = b;
3’ f(..).$ASSIGN$a(b);
4 f(a = b, g(c = d));
4’ f($ASSIGN$a(b), g($ASSIGN$c(d)));

ϕ to denote the current checkpoint. (The application may

create a sequence of checkpoints at run time, and the latest

one among them is current.) We can now define new rules

that correspond to the auxiliary methods for assignments:

< e,(σ ,ϕ) >⇓ n σ(x) == n0 ϕ(x) == unde f ined
< x = e,(σ ,ϕ) >⇓ (σ [x := n],ϕ[x := n0])

(2)

< e,(σ ,ϕ) >⇓ n ϕ(x) == n0

< x = e,(σ ,ϕ) >⇓ (σ [x := n],ϕ)
. (3)

We extend the program state from σ to tuple (σ ,ϕ). In

Rule (2), we define that if all the following conditions are

satisfied, then the new state after the assignment is the same

as (σ ,ϕ), except that σ(x) becomes n (the new value), and

ϕ(x) becomes n0 (the old value):

1. Expression e evaluates to n in state (σ ,ϕ);
2. The old value of x is n0; and

3. x does not have an old value recorded in ϕ .

On the contrary, if an old value of x has already been

recorded in ϕ , Rule (3) applies. In this case, σ updates, but

ϕ remains the same. Rule (3) is defined mainly for efficiency

(both time and space). For each checkpoint, there is only

one execution point ep to which the program can roll back,

so there is no need to store the old value more than once.

To retain multiple execution points {ep1,ep2, . . . ,epn} for

rollback, a sequence of checkpoints can be created, and the

states are recorded in them incrementally.

3.3 Special Expressions with Side-Effects

Some Java expressions have side-effects similar to assign-

ments. For example, operators such as “+=” and “++”

update their operands. When they are found in the pro-

gram, auxiliary methods are created to simulate them after

recording the old values. Their operational semantics can

be defined similarly.

1006



Feng and Lee

3.4 The Data Structure

The checkpointing system uses multiple stacks to keep track

of the change history of program states. Figure 1 shows an

example with two private fields. A different stack is allocated

for each. At run time, assignments update these fields

sequentially. Asynchronously, the program also creates a

sequence of checkpoints. In this example, Assign1 is an

assignment tofield1. No record is kept for this assignment

simply because no checkpoint exists at the beginning. When

Assign2 modifies field2, a record is kept in field2’s

stackrecord2. This is necessary, becausecheckpoint1
is created before this, and a later rollback requires field2’s

old value. The current checkpoint is associated with this

record in the stack. Later, rollback with this checkpoint or

earlier checkpoints will use this record.

Figure 1: Using Two Stacks to Record the Change History

of Two Private Fields.

For checkpoint2, however, no record needs to be

added, because checkpoint2 and checkpoint3 are

semantically equivalent. Assign3 and Assign5 are

two more assignments to field2. A record is kept for

Assign3 but not for Assign5, because none of the check-

points will require field2’s value before Assign5.

At the end of this example, if the program rolls back to

checkpoint2 or checkpoint3, the effect of Assign3
and Assign4 has to be canceled with the records in

the stacks. If it rolls back to checkpoint1 instead,

Assign2 and Assign4 need to be undone, but the record

for Assign3 will simply be discarded.

Conceptually, a different stack is allocated with every

private field (except arrays, discussed below). Globally,

the checkpointing system also uses a stack to store all the

checkpoints that have been created. For space efficiency,

we do not allocate stacks for provably unmodified fields.

3.5 Arrays

Array assignments may require special handling, because

an array can be modified in different ways as shown in this

example:

int[][] buffer;
...
buffer = new int[2][];
buffer[0] = new int[2];
buffer[0][1] = 2;

Here, buffer is assigned to with 0, 1, or 2 indices.

A different auxiliary method is needed for each case:

int[][] buffer;
...
$ASSIGN$buffer(new int[2][]);
$ASSIGN$buffer(0, new int[2]);
$ASSIGN$buffer(0, 1, 2);

The first auxiliary method has type signature “int[][]
$ASSIGN$buffer(int[][])”, and is the same as the

one introduced before. The second one, which takes one

more argument as the array’s first index, assigns a new value

(of type int[]) to the element referred to. The third one

takes two index arguments. These auxiliary methods use

different stacks to record the old values. The indices are

also recorded, so that the changes can be undone for the

affected elements only.

Array aliasing is also problematic. An array field can

be aliased with another name, possibly appearing as a local

variable or as a formal parameter to a method. (Objects

can also be aliased. However, to directly modify an aliased

object, the Java program still needs to explicitly access its

fields. This can be captured without specialty. For example,

o.a = b will be transformed to o.$ASSIGN$a(b) if o.a
is private, regardless of whether o is a local variable.) In

our approach, before an array is aliased, its contents are

backed up in the memory with another auxiliary method. It

performs a possibly multi-dimensional copy for the array.

This copy is linear in the array size. In practice, usually

only a small part of the array will actually change after

the aliasing. A full copy may not be necessary. On-going

research on alias analysis helps to predict the changed part

of an aliased array (Diwan, McKinley, and Moss 1998).

However, the complexity of a precise analysis may be

unacceptable. Therefore, we do not include alias analysis

in our current implementation.

1007



Feng and Lee

3.6 Class Substitution

Applications may also store their states in native Java objects,

such as hash tables and linked lists. These hidden states

also need to be recovered.

We decide not to modify the existing Java library.

Instead, we obtain part of its source code, and apply the same

transformation to it. The generated classes are packaged

specially for checkpointing. When the transformer detects

instantiations of the state-keeping classes in the Java library,

it substitutes them with the classes in the checkpointing

package.

Random number generators are useful in applications

such as simulators for probabilistic models. Note that

Random is also a native Java class with a state, which

is the current random seed. With its transformed version,

the checkpointing system is able to roll back the random

seed. The same sequence of random numbers will be gener-

ated after the rollback. Simulators may exploit this property,

and reproduce the probabilistic simulations.

3.7 Soundness under Assumptions

We argue that our checkpointing approach is sound under

some assumptions. By soundness we mean that no ob-

servable difference remains in the program states after a

rollback. The internal state of the Java Virtual Machine

(JVM) may become different, but we ignore this difference

as long as it cannot be observed by the program itself. Note

that the internal state of the checkpointing system itself is

not observable from the program, either.

Our assumptions are:

• States are only stored in private non-static fields.

(It is dangerous to roll back static fields in a multi-

threaded environment.)

• If states in external devices (e.g., hard disks, net-

work and human interaction devices) need to be

rolled back, extra methods are provided by the

programmers to handle them.

• If state-keeping classes in libraries (such as the Java

standard library) need to be rolled back, they are

transformed, and class substitution is performed in

the application source code.

• All checkpointing operations, including checkpoint

creation, state recording, and rollback, are per-

formed atomically.

A proof of soundness can be obtained by a thorough

study of all the Java language features that a program may

use to change its states or observe the changes.

4 CHECKPOINT MANAGEMENT

During execution, the applications can create checkpoints or

roll back to previously created checkpoints. This is achieved

by directly invoking methods in the checkpointing system.

4.1 Checkpoint Creation

The transformer adds method “CheckpointObject
$GET$CHECKPOINT()” to each transformed class. This

method returns the checkpoint object for any instance of that

class. A checkpoint object monitors a set of Java objects

at run time. Its method “long createCheckpoint()”

is used to create checkpoints for those Java objects. This

method increases the global checkpointing timestamp (an in-

creasing static long value). The new timestamp is returned

as a checkpoint handle, a globally unique identifier for the

newly created checkpoint. This checkpointing operation

takes only small constant time.

The checkpoint objects monitor disjoint sets of Java

objects. In our implementation, we define these sets of Java

objects to be the basic unit of checkpointing and rollback

operations.

4.2 Unification of Checkpoint Objects

At run time, checkpoint objects monitor changing sets of Java

objects. Two sets may be unified so that only one checkpoint

object remains to monitor the new set. A motivating example

for this situation is given below. In this example, a is a

private object field of the current class; b is another object

of a compatible type.

a = b;
// Create a checkpoint.
long handle =
$GET$CHECKPOINT$().createCheckpoint();

b.i = 1;
// Roll back.
$GET$CHECKPOINT$().rollback(handle);

After the transformation, the above piece of code be-

comes:

$ASSIGN$a(b);
// Create a checkpoint.
long handle =
$GET$CHECKPOINT$().createCheckpoint();

b.$ASSIGN$i(1);
// Roll back.
$GET$CHECKPOINT$().rollback(handle);

Assume that this object (the object on which the

method is invoked) and b are initially monitored by two

1008



Feng and Lee

different checkpoint objects. If no extra care is taken, after

the rollback, the state of b will not be restored because it

belongs to another set that does not contain this object.

As a consequence, the change of b.i is still observable

from this object with a.i. The naive solution of simply

changing b’s checkpoint object when it is assigned to a will

not work in general, because the objects that b refers to may

still contain observable changes. A correct solution requires

that the auxiliary method $ASSIGN$a unify the two sets

of Java objects, and form a new checkpoint object that

monitors the union set. Therefore, the rollback operation

in this example is actually called on the unified checkpoint

object.

The use of multiple checkpoint objects allows the pro-

gram to record and roll back only part of its state. For

example, a simulator may decide to roll back the memory

contents corresponding to the running model’s state, but

keep the state changes in other components such as user

interface and debugger. In this case, it will only roll back

the checkpoint object that monitors the model’s simulation

state.

4.3 Rollback and Discard

As discussed above, the rollback operation affects only the

set monitored by the checkpoint object. The changed private

fields are traversed in a depth-first search (DFS). Their old

values are restored with the values in their stacks. After

rollback, the used checkpoint and other newer ones are

discarded. The memory allocated for the records will be

reclaimed by the Java garbage collector.

The discard operation is similar to rollback, except that

it only discards the records without restoring the values.

The memory will also be reclaimed.

Rollback and discard, unlike other checkpointing oper-

ations that take constant time, have linear complexity in the

number of changes recorded after the checkpoint creation

time. Therefore, applications aiming for high performance

should not invoke these operations frequently.

5 APPLICATION: A SIMULATION FRAMEWORK
FOR EMBEDDED SYSTEMS

Our checkpointing technique has many applications. The

simulation environment, Ptolemy II, developed at EECS,

UC Berkeley, is an example of an application. It is a Java-

based framework for model-based design and simulation

of embedded systems. The need for a dynamic state re-

covery mechanism arises as we develop distributed discrete

event simulation using Time Warp (Jefferson 1985). In our

system, distributed collaborating components in the model

keep track of their local virtual times, with which their

event handlers decide whether events are imminent. The

system also keeps track of the Global Virtual Time (GVT), a

lower bound of the local times. We allow the local times to

differ from each other. The faster components do computa-

tions in advance, optimistically assuming this is safe. This

type of simulation may yield a significant performance im-

provement (compared to traditional distributed simulations

where components advance time synchronously). However,

as a consequence, the faster components may receive events

sent in their past from slower ones, giving rise to causality

conflicts. To maintain global consistency, on receiving past

events, the components must recover their previous state by

undoing the optimistic computations. (These components

should also cancel the messages sent as the outcome of

the computations, but here we do not address a specific

mechanism to achieve this. The reader is referred to Das

et al. 1994.)

We take the program transformation approach to provide

state recovery for the simulator. In our case, the programs

are in fact distributed models constructed by connecting

basic building blocks written in Java. The transformation

tool takes any existing model, and converts it into a new one

with checkpointing functionality. In a simulation, the new

model may create a checkpoint every time its components

process events or advance their local times. When a past

event is received, the affected component rolls back with a

previously created checkpoint. This rollback precisely sets

back its local time to the event time, which is always greater

than or equal to GVT. This time-advancing guarantee helps

to avoid Domino Effect (Strom and Yemini 1985).

Whenever the whole system advances the GVT, the

components discard the older checkpoints to reclaim mem-

ory.

6 RELATED WORK

Software recovery or fault-tolerance is being actively studied

by a number of researchers. Serialization is a straightfor-

ward method. Many contemporary languages, such as Java

and C#, provide built-in serialization mechanisms. How-

ever, these require the programmers to explicitly define the

methods to record the states into output streams and con-

versely, to restore the states from input streams. Some of

the drawbacks are listed below:

• It places extra burden on the programmers by re-

quiring them to implement the serialization and

deserialization methods;

• It is not efficient enough, because the contents of

objects and arrays, instead of their references, are

stored in the streams.

• It is difficult to determine what portion of the

state will change in the future. To be exhaustive,

programmers usually take a conservative approach

by serializing the entire state.

1009



Feng and Lee

Unlike serialization, incremental backup has been im-

plemented in many database systems such as Berkeley

DB (Olson, Bostic, and Seltzer 1999), Oracle (Greenwald,

Stackowiak, and Stern 2001) and MySQL. It is an efficient

backup technique that makes it possible to restore external

data after a system crash. Because it has the assumption that

data are stored externally, it does not solve the problem of

discovering and recording the application state in memory.

Software transactional memory (STM) (Shavit and

Touitou 1995) is another related technique. It provides

transactions which guarantee atomic reads and writes to

shared memory. In a parallel system, before a process can

write to a shared memory block, it starts a transaction.

In the transaction, the write is performed on a separate

copy invisible from other processes. When the write is

finished, a test-and-commit operation is issued. It commits

the write only if the shared memory block has not been

modified concurrently by other processes. We believe that

this approach is in a sense orthogonal to ours. It guarantees

atomicity, but a committed change cannot be rolled back.

In our approach, atomicity is not guaranteed, but the state

can always roll back (provided that there is enough memory

for the records).

There has been research on incremental state saving

for C++ and executable code. For example, in Steinman

(1993) an efficient state saving mechanism is provided for

C++. However, it cannot be used for Java without change.

Moreover, reference manipulations are not guaranteed to

be rollbackable. Dynamic data structures, such as lists and

trees, need special treatment. C++ templates are used in

Bruce (1995) and Rönngren, Liljenstam, Ayani, and Montag-

nat (1996) to capture state changes in the source. However,

many other languages do not support templates, and heavy

use of templates significantly increases compile time and

code size. In West and Panesar (1996), executable code

is directly analyzed and modified to capture state changes.

However, due to the loss of source-level information, it

is not easy to detect states precisely. The vase variaty of

executable formats also limits its application.

A Java-based incremental checkpointing mechanism

similar to ours is independently proposed in Lawall and

Muller (2000). It can be considered as incremental se-

rialization for Java. Programmers need to provide extra

methods to incrementally record states in output streams.

Compared to their approach, our incremental checkpointing

mechanism has these advantages:

• No extra methods need to be provided by program-

mers. The transformer automatically generates the

auxiliary methods.

• States are automatically determined by the program

analyzer. Programmers need not identify the fields

that will change in the future.

• We do not record state in streams. Instead, we

store only object fields’ old references in memory

when they are assigned to. As a result, every state

change incurs only a constant overhead.

7 CONCLUSION

Many applications, including our distributed simulation en-

vironment with Time Warp, require run-time state recovery.

An incremental checkpointing mechanism is developed here.

This mechanism is based on program analysis and transfor-

mation. We automate this process with a tool that takes Java

source code as input, and outputs new code that supports

incremental checkpointing. The transformed applications

can create checkpoints and recover their states dynamically.

Programmers are thus freed from dealing with checkpointing

details. Frequently performed operations, such as check-

point creation and state recording, take only small constant

time. Rollback and discard are the less frequently performed

operations that take linear time in the number of recorded

state changes, which is bounded by the number of state

variables times the number of checkpoints.

ACKNOWLEDGMENTS

This paper describes work that is part of the Ptolemy project,

which is supported by the National Science Foundation

(NSF award number CCR-00225610), and CHESS (the

Center for Hybrid and Embedded Software Systems), which

receives support from NSF and the following companies:

Agilent, DGIST, General Motors, Hewlett Packard, Infineon,

Microsoft, and Toyota.

REFERENCES

Boehm, H.-J., and A. J. Demers. 1997. A garbage collec-

tor for C and C++. <http://www.hpl.hp.com/
personal/Hans_Boehm/gc/>.

Brooks, C., E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao,

and H. Zheng. 2005. Ptolemy II - heterogeneous con-

current modeling and design in Java. Technical Report

UCB/ERL M05/21, EECS, UC Berkeley.

Bruce, D. 1995. The treatment of state in optimistic sys-

tems. In Proceedings of the 9th Workshop on Parallel
and Distributed Simulation, 40–49: IEEE Computer

Society.

Das, S., R. Fujimoto, K. Panesar, D. Allison, and M. Hy-

binette. 1994. GTW: a time warp system for shared

memory multiprocessors. In Proceedings of the 26th
Winter Simulation Conference, 1332–1339.

Diwan, A., K. S. McKinley, and J. E. B. Moss. 1998. Type-

based alias analysis. In PLDI ’98: Proceedings of
the ACM SIGPLAN 1998 Conference on Programming

1010



Feng and Lee

Language Design and Implementation, 106–117. New

York, NY, USA: ACM Press.

Fowler, M. 1999. Refactoring: improving the design of exist-
ing code. Boston, MA, USA: Addison-Wesley Longman

Publishing Co., Inc.

Greenwald, R., R. Stackowiak, and J. Stern. 2001, June.

Oracle essentials: Oracle9 i, Oracle8 i and Oracle8.

2nd edition. O’Reilly & Associates, Inc.

Jefferson, D. R. 1985. Virtual time. ACM Transactions on
Programming Language and Systems 7 (3): 404–425.

Kiczales, G., J. Lamping, A. Menhdhekar, C. Maeda,

C. Lopes, J.-M. Loingtier, and J. Irwin. 1997. Aspect-

oriented programming. In Proceedings of the Euro-
pean Conference on Object-Oriented Programming, ed.

M. Akşit and S. Matsuoka, Volume 1241, 220–242.

Berlin, Heidelberg, and New York: Springer-Verlag.

Lawall, J. L., and G. Muller. 2000. Efficient incremental

checkpointing of Java programs. In Proceedings of the
International Conference on Dependable Systems and
Networks, 61–70. New York, NY, USA: IEEE.

Olson, M. A., K. Bostic, and M. I. Seltzer. 1999. Berke-

ley DB. In USENIX Annual Technical Conference,
FREENIX Track, 183–191.

Rönngren, R., M. Liljenstam, R. Ayani, and J. Montagnat.

1996. Transparent incremental state saving in time warp

parallel discrete event simulation. In Proceedings of the
Workshop on Parallel and Distributed Simulation, 70–

77.

Shavit, N., and D. Touitou. 1995. Software transactional

memory. In Symposium on Principles of Distributed
Computing, 204–213.

Steinman, J. S. 1993. Incremental state saving in SPEEDES

using C++. In Proceedings of the Winter Simulation
Conference, 687–696.

Strom, R., and S. Yemini. 1985. Optimistic recovery in dis-

tributed systems. ACM Transactions on Programming
Language and Systems 3 (3): 204–226.

West, D., and K. Panesar. 1996. Automatic incremental state

saving. In Proceedings of the Workshop on Parallel and
Distributed Simulation, 78–85.

AUTHOR BIOGRAPHIES

THOMAS HUINING FENG is a Ph.D. student at the

Electrical Engineering and Computer Sciences (EECS)

department at U.C. Berkeley. He is a member of the

Berkeley Ptolemy project, headed by Prof. Edward A.

Lee. His research interests include heterogeneous mod-

eling and simulation, distributed systems and Time Warp

simulation, automatic program analysis and transformation,

software fault tolerance, and software engineering. He

obtained his Bachelor’s degree from Nanjing University

in China, and his Master’s degree (M.Sc) from McGill

University in Canada. His e-mail address is <tfeng@
eecs.berkeley.edu>, and his web page is <http:
//ptolemy.eecs.berkeley.edu/˜tfeng/>.

EDWARD A. LEE is a Professor and Chair of the Electrical

Engineering and Computer Sciences (EECS) department at

U.C. Berkeley. His research interests center on design, mod-

eling, and simulation of embedded, real-time computational

systems. He is a director of Chess, the Berkeley Center for

Hybrid and Embedded Software Systems, and is the director

of the Berkeley Ptolemy project. He is co-author of five

books and numerous papers. He has led the development of

several influential open-source software packages, including

Ptolemy, Ptolemy II, HyVisual, and VisualSense. His bache-

lors degree (B.S.) is from Yale University (1979), his masters

(S.M.) from MIT (1981), and his Ph.D. from U.C. Berkeley

(1986). From 1979 to 1982 he was a member of technical

staff at Bell Telephone Laboratories in Holmdel, New Jersey,

in the Advanced Data Communications Laboratory. He is

a co-founder of BDTI, Inc., where he is currently a Senior

Technical Advisor, and has consulted for a number of other

companies. He is a Fellow of the IEEE, was an NSF Presi-

dential Young Investigator, and won the 1997 Frederick Em-

mons Terman Award for Engineering Education. His e-mail

address is <eal@eecs.berkeley.edu>, and his web

page is <http://ptolemy.eecs.berkeley.edu/
˜eal/>.

1011



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


