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Abstract. Checkpointing is widely used in robust fault-tolerant appli-
cations. We present an efficient incremental checkpointing mechanism. It
requires to record only the the state changes and not the complete state.
After the creation of a checkpoint, state changes are logged incremen-
tally as records in memory, with which an application can spontaneously
roll back later. This incrementality allows us to implement checkpointing
with high performance. Only small constant time is required for check-
point creation and state recording. Rollback requires linear time in the
number of recorded state changes, which is bounded by the number of
state variables times the number of checkpoints. We implement a Java
source transformer that automatically converts an existing application
into a behavior-preserving one with checkpointing functionality. This
transformation is application-independent and application-transparent.
A wide range of applications can benefit from this technique. Currently,
it has been used for distributed discrete event simulation using the Time
Warp technique.

1 INTRODUCTION

Checkpointing is a recovery technique widely used in robust fault-tolerant appli-
cations. E.g., many contemporary database applications have built-in recovery
mechanisms, with which they can recover data from unintended destructive oper-
ations, storage failure, or program crash. Safety-critical applications also employ
recovery mechanisms to ensure that once unexpected situations occur, they can
still restore sensible states and continue to function correctly. These applica-
tions create checkpoints during normal execution. Those checkpoints record the
information necessary to recover the states in case of certain types of failure.
The types of tolerable failure are very application-dependent. E.g., document
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editing applications may attempt to tolerate software bugs, but they generally
assume protected memory segments and disks to be reliable storage; database
applications may tolerate some disk failure by using Redundant Array of Inde-
pendent/Inexpensive Disks (RAID) or system backups; safety-critical applica-
tions do not rely on any single type of storage, but make use of various kinds of
storage devices to ensure maximum fault-tolerance capability.

We develop an incremental checkpointing mechanism here. It does not re-
quire to take snapshots of the complete execution state. The applications can
execute asynchronously with their checkpointing systems. The application states
are changed during the execution. Every independent change is recorded in the
most recent checkpoint at a small constant cost. Later, the applications can
spontaneously restore their state by rolling back to the checkpoints.

We have employed this incremental checkpointing mechanism in our modeling
and simulation environment, Ptolemy II [1]. Instead of restricting the mechanism
to be applicable for Ptolemy II only, we view this use case as a concrete example
of a rich set of potential applications. Therefore, application-independence is an
important property that we try to pursue. Besides this, our implementation
is also application-transparent so that application designers need not consider
low-level checkpointing details. To achieve these goals, we take the program
refactoring [2] approach, and invent a source to source transformer. It accepts
the source of existing applications, and outputs behavior-preserving applications
with extra functions for checkpointing. Very little human interaction is required
in this process.

The rest of the paper is organized as follows: Section 2 offers an overview of
our checkpointing strategy. In Section 3, the source transformation is discussed.
In Section 4, operations for checkpoint management are provided so that the
applications can spontaneously interact with their checkpointing systems at run
time. Our simulation environment is presented in Section 5 as an application.
Related work is studied in Section 6. Section 7 concludes this work.

2 OVERVIEW OF THE CHECKPOINTING
STRATEGY

Application-independence and application-transparency [3] are two important
goals of our checkpointing strategy:

– Application-independence: We make no assumption on the nature of the
target applications. The analysis and transformation method is generally
applicable to the source of many existing applications. Currently, we have
an implementation for arbitrary Java programs, but other languages can also
be supported using similar techniques.

– Application-transparency: We try to free application designers from consid-
ering low-level checkpointing details. In some other checkpointing approaches
[4], the designers are required to manually construct their applications in a
special way for checkpointing. This is not required in our approach. A pro-
gram analyzer is implemented to automatically extract state information.



With this information, behavior-preserving applications can be generated
with the program transformer.

2.1 The Problem

State recovery is commonly required in applications. However, there is no uni-
form definition of application state. General-purpose applications usually con-
sider the contents of their accessible memory as their state, because this memory
contains the objects that they operate on. E.g., simulation environments store
the run-time model state in memory, and document editing applications store
documents in memory when they are edited by the users. For these applications,
it is sufficient to record the history of memory writes in the checkpoints.

Our research aims to develop an efficient checkpointing mechanism for the
above-described applications. We do not try to handle the state of external
devices. For checkpointing of these states, we fall back to the traditional approach
by requiring the programmers to provide extra methods.

We further assume that the affected applications themselves issue checkpoint
and rollback requests. Our simulation environment is one such example. It sim-
ulates distributed discrete event models using Time Warp [5]. It requests to
roll back its own state when a causality conflict is detected. Document editing
applications can be another example. They allow users to undo some editing op-
erations. Under this assumption of spontaneity, we do not address the problem
caused by arbitrary unexpected crash that completely invalidates the running
application.

2.2 A Program Analysis and Transformation Approach

The state needs to be discovered before a mechanism can be provided to record it.
Because we define the state to be the contents of application-accessible memory,
we can use a program analyzer that statically analyzes memory access in the
source code. For applications written in object-oriented languages such as Java,
the state is accessed by means of object fields. We currently only consider private
fields as application state. This assumption is not necessary for the correctness of
this technique, but it allows us to simplify the analyzer design. Because private
fields can only be modified in the Java files that define them, the analyzer can
precisely detect all the modification sites in those files. 1

At run time, the checkpointing system maintains the application state once
a checkpoint is created. We consider the checkpointing system’s private memory
as a stable storage invisible from the application itself. State changes are logged
in that memory.

Extra code is required to log the changes. This code is scattered throughout
the application. It is hard and error-prone for the programmers themselves to
1 Public fields and protected fields can also be supported, either by extending the

analyzer to analyze all the Java files, or by transforming them into private fields
with get/set methods generated.



write this code by hand. Therefore, we develop a program transformer that
exploits the information from the analyzer, and automatically inserts this extra
code at the program points where state is change.

3 SOURCE TRANSFORMATION

In this section, a program transformation method is presented for Java. It au-
tomatically inserts checkpointing code at the program points where state can
be changed at run time. This is essentially an aspect-oriented programming [6]
approach, as we define the aspects and also provide a tool to weave those aspects
with the target programs.

Though we currently assume that the applications are written in Java, our
method is generally applicable to other languages with some assumptions. Specif-
ically, we assume no pointer aliasing, no pointer arithmetic, and automatic mem-
ory management (available in some libraries such as Boehm’s garbage collector
[7]). These assumptions may be met by some C++ applications.

3.1 Analysis

Our method starts with an analysis phase. The analyzer performs an intra-
procedural analysis on all the Java classes that need checkpointing. It extracts
the following information:

1. All the private fields of those classes and their types.
2. All the operations in the code that can modify the private fields.
3. The class hierarchy. (Not all private fields are explicitly defined in the classes.

Some of them may be implicitly inherited from superclasses.)

There are commonalities between this analyzer and the a Java compiler. In
a Java compiler, information types 1 and 3 are obtained from the type checker,
while type 2 is examined by the scoping and visibility checker.

3.2 Assignment Transformation

Assignments may modify program state. Intuitive examples of assignment trans-
formations are given in Table 1. The assignments in the original source are trans-
formed to calls of auxiliary methods. In example 1, where a is a private field of
type int, the assignment a = b becomes a call to $ASSIGN$a with argument b.
$ASSIGN$a is automatically generated for the current class:

private int $ASSIGN$a(int newValue) {
... // Record the old value of a.
return a = newValue;

}



1 a = b;

1’ $ASSIGN$a(b);

2 f(a = b);

2’ f($ASSIGN$a(b));

3 f(..).a = b;

3’ f(..).$ASSIGN$a(b);

4 f(a = b, g(c = d));

4’ f($ASSIGN$a(b), g($ASSIGN$c(d)));

Table 1. Examples of assignment transformations.

This method records the old value of a, assigns the new value to it, and then
returns the new value. It precisely models the observable effect of an assignment
expression in Java.

For object assignments, the transformer generates the same auxiliary meth-
ods. This means that only object pointers are stored for the checkpoints. (Object
assignments in Java are essentially pointer assignments.) Cloning or deep copy
is not necessary. Therefore, the cost for logging an assignment is always a small
constant, no matter what type the field has.

In operational semantics, the following rule formally defines Java assign-
ments:

< e, σ >⇓ n

< x = e, σ >⇓ σ[x := n]
(1)

According to this rule, if expression e is evaluated to number n in the abstract
program state σ, then the new state after executing x = e is the same as σ,
except that the value of variable x becomes n (denoted by σ[x := n]).

In the transformed code, we can imagine that a checkpoint is used to record
the change history. We may use ϕ to denote the current checkpoint. (The ap-
plication may create a sequence of checkpoints at run time, and the latest one
among them is current.) We can now define new rules that correspond to the
auxiliary methods for assignments:

< e, (σ, ϕ) >⇓ n σ(x) == n0 ϕ(x) == undefined

< x = e, (σ, ϕ) >⇓ (σ[x := n], ϕ[x := n0])
(2)

< e, (σ, ϕ) >⇓ n ϕ(x) == n0

< x = e, (σ, ϕ) >⇓ (σ[x := n], ϕ)
(3)

We extend the program state from σ to tuple (σ, ϕ). In rule (2), we define that if
all the following conditions are satisfied, then the new state after the assignment
is the same as (σ, ϕ), except that σ(x) becomes n (the new value), and ϕ(x)
becomes n0 (the old value):

1. Expression e evaluates to n in state (σ, ϕ);
2. The old value of x is n0; and



3. x does not have an old value recorded in ϕ.

On the contrary, if an old value of x has already been recorded in ϕ, rule (3) ap-
plies. In this case, σ updates, but ϕ remains the same. Rule (3) is defined mainly
for efficiency (both time and space). For each checkpoint, there is only one execu-
tion point ep to which the program can roll back, so there is no need to store the
old value more than once. To retain multiple execution points {ep1, ep2, . . . , epn}
for rollback, a sequence of checkpoints can be created, and the states are recorded
in them incrementally.

3.3 Special Expressions with Side-Effects

Some Java expressions have side-effects similar to assignments. E.g., operators
such as “+=” and “++” update their operands. When they are found in the
program, auxiliary methods are created to simulate them after recording the old
values. Their operational semantics can be defined similarly.

3.4 The Data Structure

Fig. 1. Using two stacks to record the change history of two private fields.

The checkpointing system uses multiple stacks to keep track of the change
history of program states. Figure 1 shows an example with two private fields. A
different stack is allocated for each. At run time, assignments update these fields
sequentially. Asynchronously, the program also creates a sequence of checkpoints.
In this example, Assign1 is an assignment to field1. No record is kept for
this assignment simply because no checkpoint exists at the beginning. When
Assign2 modifies field2, a record is kept in field2’s stack record2. This
is necessary, because checkpoint1 is created before this, and a later rollback
requires field2’s old value. The current checkpoint is associated with this record



in the stack. Later, rollback with this checkpoint or earlier checkpoints will use
this record.

For checkpoint2, however, no record needs to be added, because checkpoint2
and checkpoint3 are semantically equivalent. Assign3 and Assign5 are two
more assignments to field2. A record is kept for Assign3 but not for Assign5,
because none of the checkpoints will require field2’s value before Assign5.

At the end of this example, if the program rolls back to checkpoint2 or
checkpoint3, the effect of Assign3 and Assign4 has to be canceled with the
records in the stacks. If it rolls back to checkpoint1 instead, Assign2 and
Assign4 need to be undone, but the record for Assign3 will simply be discarded.

Conceptually, a different stack is allocated with every private field (except
arrays, which are discussed below). Globally, the checkpointing system also uses
a stack to store all the checkpoints that have been created. For space efficiency,
we do not allocate stacks for provably unmodified fields.

3.5 Arrays

Array assignments may require special handling, because an array can be mod-
ified in different ways as shown in this example:

int[][] buffer;
...
buffer = new int[2][];
buffer[0] = new int[2];
buffer[0][1] = 2;

Here, buffer is assigned to with 0, 1, or 2 indices. A different auxiliary
method is needed for each case:

int[][] buffer;
...
$ASSIGN$buffer(new int[2][]);
$ASSIGN$buffer(0, new int[2]);
$ASSIGN$buffer(0, 1, 2);

The first auxiliary method has type signature “int[][] $ASSIGN$buffer(int[][])”,
and is the same as the one introduced before. The second one, which takes one
more argument as the array’s first index, assigns a new value (of type int[]) to
the element referred to. The third one takes two index arguments. These auxil-
iary methods use different stacks to record the old values. The indices are also
recorded, so that the changes can be undone for the affected elements only.

Array aliasing is also problematic. An array field can be aliased with another
name (possibly appearing as a local variable or as a formal parameter to a
method).2 In our approach, before an array is aliased, its contents are backed
2 Objects can also be aliased. However, to directly modify an aliased object, the Java

program still needs to explicitly access its fields. This can be captured without
specialty. E.g., o.a = b will be transformed to o.$ASSIGN$a(b) if o.a is private,
regardless of whether o is a local variable.



up in the memory with another auxiliary method. It performs a possibly multi-
dimensional copy for the array. This copy is linear in the array size. In practice,
usually only a small part of the array will actually change after the aliasing.
A full copy may not be necessary. On-going research on alias analysis helps to
predict the changed part of an aliased array [8]. However, the complexity of a
precise analysis may be unacceptable. Therefore, we do not include alias analysis
in our current implementation.

3.6 Class Substitution

Applications may also store their states in native Java objects, such as hash
tables and linked lists. These hidden states also need to be recovered.

We decide not to modify the existing Java library. Instead, we obtain part of
its source code, and apply the same transformation to it. The generated classes
are packaged specially for checkpointing. When the transformer detects instan-
tiations of the state-keeping classes in the Java library, it substitutes them with
the classes in the checkpointing package.

Random number generators are useful in applications such as simulators for
probabilistic models. Note that Random is also a native Java class with a state,
which is the current random seed. With its transformed version, the checkpoint-
ing system is able to roll back the random seed. The same sequence of random
numbers will be generated after the rollback. Simulators may exploit this prop-
erty, and reproduce the probabilistic simulations.

3.7 Soundness under Assumptions

We argue that our checkpointing approach is sound under some assumptions. By
soundness we mean that no observable difference remains in the program states
after a rollback. The internal state of the Java Virtual Machine (JVM) may
become different, but we ignore this difference as long as it cannot be observed
by the program itself. Note that the internal state of the checkpointing system
itself is not observable from the program, either.

Our assumptions are:

– States are only stored in private non-static fields. (It is dangerous to roll
back static fields in a multi-threaded environment.)

– If states in external devices (e.g., hard disks, network and human interac-
tion devices) need to be rolled back, extra methods are provided by the
programmers to handle them.

– If state-keeping classes in libraries (such as the Java standard library) need
to be rolled back, they are transformed, and class substitution is performed
in the application source code.

– All checkpointing operations, including checkpoint creation, state recording,
and rollback, are performed atomically.

A proof of soundness can be obtained by a thorough study of all the Java
language features that a program may use to change its states or observe the
changes.



4 CHECKPOINT MANAGEMENT

During execution, the applications can create checkpoints or roll back to previ-
ously created checkpoints. This is achieved by directly invoking methods in the
checkpointing system.

4.1 Checkpoint Creation

The transformer adds method “CheckpointObject $GET$CHECKPOINT()” to each
transformed class. This method returns the checkpoint object for any instance
of that class. A checkpoint object monitors a set of Java objects at run time.
Its method “long createCheckpoint()” is used to create checkpoints for those
Java objects. This method increases the global checkpointing timestamp (an
increasing static long value). The new timestamp is returned as a checkpoint
handle, a globally unique identifier for the newly created checkpoint. This check-
pointing operation takes only small constant time.

The checkpoint objects monitor disjoint sets of Java objects. In our imple-
mentation, we define these sets of Java objects to be the basic unit of check-
pointing and rollback operations.

4.2 Unification of Checkpoint Objects

At run time, checkpoint objects monitor changing sets of Java objects. Two sets
may be unified so that only one checkpoint object remains to monitor the new
set. A motivating example for this situation is given below. In this example, a
is a private object field of the current class; b is another object of a compatible
type.

a = b;
// Create a checkpoint.
long handle =

$GET$CHECKPOINT$().createCheckpoint();
b.i = 1;
// Roll back.
$GET$CHECKPOINT$().rollback(handle);

After the transformation, the above piece of code becomes:

$ASSIGN$a(b);
// Create a checkpoint.
long handle =

$GET$CHECKPOINT$().createCheckpoint();
b.$ASSIGN$i(1);
// Roll back.
$GET$CHECKPOINT$().rollback(handle);



Assume that this object (the object on which the method is invoked) and
b are initially monitored by two different checkpoint objects. If no extra care is
taken, after the rollback, the state of b will not be restored because it belongs to
another set that does not contain this object. As a consequence, the change of
b.i is still observable from this object with a.i. The naive solution of simply
changing b’s checkpoint object when it is assigned to a will not work in general,
because the objects that b refers to may still contain observable changes. A
correct solution requires that the auxiliary method $ASSIGN$a unify the two
sets of Java objects, and form a new checkpoint object that monitors the union
set. Therefore, the rollback operation in this example is actually called on the
unified checkpoint object.

The use of multiple checkpoint objects allows the program to record and roll
back only part of its state. E.g., a simulator may decide to roll back the memory
contents corresponding to the running model’s state, but keep the state changes
in other components such as user interface and debugger. In this case, it will
only roll back the checkpoint object that monitors the model’s simulation state.

4.3 Rollback and Discard

As discussed above, the rollback operation affects only the set monitored by
the checkpoint object. The changed private fields are traversed in a depth-first
search (DFS). Their old values are restored with the values in their stacks. After
rollback, the used checkpoint and other newer ones are discarded. The memory
allocated for the records will be reclaimed by the Java garbage collector.

The discard operation is similar to rollback, except that it only discards the
records without restoring the values. The memory will also be reclaimed.

Rollback and discard, unlike other checkpointing operations that take con-
stant time, have linear complexity in the number of changes recorded after the
checkpoint creation time. Therefore, applications aiming for high performance
should not invoke these operations frequently.

5 APPLICATION: A SIMULATION FRAMEWORK
FOR EMBEDDED SYSTEMS

Our checkpointing technique has many applications. The simulation environ-
ment, Ptolemy II, developed at EECS, UC Berkeley, is an example of an ap-
plication. It is a Java-based framework for model-based design and simulation
of embedded systems. The need for a dynamic state recovery mechanism arises
as we develop distributed discrete event simulation using Time Warp [5]. In our
system, distributed collaborating components in the model keep track of their
local virtual times, with which their event handlers decide whether events are im-
minent. The system also keeps track of the Global Virtual Time (GVT), a lower
bound of the local times. We allow the local times to differ from each other.
The faster components do computations in advance, optimistically assuming



this is safe. This type of simulation may yield a significant performance im-
provement (compared to traditional distributed simulations where components
advance time synchronously). However, as a consequence, the faster components
may receive events sent in their past from slower ones, giving rise to causality
conflicts. To maintain global consistency, on receiving past events, the compo-
nents must recover their previous state by undoing the optimistic computations.3

We take the program transformation approach to provide state recovery for
the simulator. In our case, the programs are in fact distributed models con-
structed by connecting basic building blocks written in Java. The transformation
tool takes any existing model, and converts it into a new one with checkpoint-
ing functionality. In a simulation, the new model may create a checkpoint every
time its components process events or advance their local times. When a past
event is received, the affected component rolls back with a previously created
checkpoint. This rollback precisely sets back its local time to the event time,
which is always greater than or equal to GVT. This time-advancing guarantee
helps to avoid Domino Effect [3].

Whenever the whole system advances the GVT, the components discard the
older checkpoints to reclaim memory.

6 RELATED WORK

Software recovery or fault-tolerance is being actively studied by a number of
researchers. Serialization is a straightforward method. Many contemporary lan-
guages, such as Java and C#, provide built-in serialization mechanisms. How-
ever, these require the programmers to explicitly define the methods to record
the states into output streams and conversely, to restore the states from input
streams. Some of the drawbacks are listed below:

– It places extra burden on the programmers by requiring them to implement
the serialization and deserialization methods;

– It is not efficient enough, because the contents of objects and arrays, instead
of their references, are stored in the streams.

– It is difficult to determine what portion of the state will change in the future.
To be exhaustive, programmers usually take a conservative approach by
serializing the entire state.

Unlike serialization, incremental backup has been implemented in many database
systems such as Berkeley DB[10], Oracle[11] and MySQL. It is an efficient backup
technique that makes it possible to restore external data after a system crash.
Because it has the assumption that data are stored externally, it does not solve
the problem of discovering and recording the application state in memory.

3 These components should also cancel the messages sent as the outcome of the com-
putations, but here we do not address a specific mechanism to achieve this. The
reader is referred to [9].



Software transactional memory (STM) [12] is another related technique. It
provides transactions which guarantee atomic reads and writes to shared mem-
ory. In a parallel system, before a process can write to a shared memory block, it
starts a transaction. In the transaction, the write is performed on a separate copy
invisible from other processes. When the write is finished, a test-and-commit op-
eration is issued. It commits the write only if the shared memory block has not
been modified concurrently by other processes. We believe that this approach is
in a sense orthogonal to ours. It guarantees atomicity, but a committed change
cannot be rolled back. In our approach, atomicity is not guaranteed, but the state
can always roll back (provided that there is enough memory for the records).

An incremental checkpointing mechanism similar to ours is independently
proposed in [4]. It can be considered as incremental serialization for Java. Pro-
grammers need to provide extra methods to incrementally record states in output
streams. Compared to their approach, our incremental checkpointing mechanism
has these advantages:

– No extra methods need to be provided by programmers. The transformer
automatically generates the auxiliary methods.

– States are automatically determined by the program analyzer. Programmers
need not identify the fields that will change in the future.

– We do not record state in streams. Instead, we store only object fields’ old
references in memory when they are assigned to. As a result, every state
change incurs only a constant overhead.

7 CONCLUSION

Many applications, including our distributed simulation environment with Time
Warp, require run-time state recovery. An incremental checkpointing mechanism
is developed here. This mechanism is based on program analysis and transfor-
mation. We automate this process with a tool that takes Java source code as
input, and outputs new code that supports incremental checkpointing. The trans-
formed applications can create checkpoints and recover their states dynamically.
Programmers are thus freed from dealing with checkpointing details. Frequently
performed operations, such as checkpoint creation and state recording, take only
small constant time. Rollback and discard are the less frequently performed op-
erations that take linear time in the number of recorded state changes, which is
bounded by the number of state variables times the number of checkpoints.
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