
Ptera: An Event-Oriented Model of Computation for
Heterogeneous Systems∗

Thomas Huining Feng
Oracle Corporation, CA, USA
thomas.feng@oracle.com

Edward A. Lee
EECS, UC Berkeley, CA, USA
eal@eecs.berkeley.edu

Lee W. Schruben
IEOR, UC Berkeley, CA, USA

lees@berkeley.edu

ABSTRACT
Many modeling techniques for embedded systems focus on
events that occur in time and the causality relationships
between them. Event-oriented modeling complements class-
oriented, object-oriented, actor-oriented and state-oriented
approaches. To facilitate event-oriented modeling, we have
extended an older established model called event graphs to
define new model of computation that we call Ptera (Ptolemy
event relationship actors). Ptera is appropriate for mod-
eling complex discrete-event systems. A key capability is
that Ptera models conform with an actor abstract seman-
tics that permits hierarchical composition with other models
of computation such as discrete-event actors, dataflow, pro-
cess networks and finite state machines. This enables their
use in complex system design, where not every aspect of the
system is best described with event-oriented modeling.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
real-time and embedded systems; F.1.1 [Computation by
Abstract Devices]: Models of Computation—cyber-physical
systems; I.6.5 [Simultation and Modeling]: Model Devel-
opment[models cyber-physical interactions]; J.7 [Computers
in Other Systems][computer-based systems]

General Terms
Design, Theory

∗This work was supported in part by the Center for Hy-
brid and Embedded Software Systems (CHESS) at UC
Berkeley, which receives support from the National Science
Foundation (NSF awards #0720882 (CSR-EHS: PRET) and
#0931843 (ActionWebs), the U. S. Army Research Office
(ARO #W911NF-07-2-0019), the U. S. Air Force Office
of Scientific Research (MURI #FA9550-06-0312), the Air
Force Research Lab (AFRL), the Multiscale Systems Cen-
ter (MuSyC) and the following companies: Bosch, National
Instruments, Thales, and Toyota.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-904-6/10/10 ...$10.00.

1. INTRODUCTION
Many modeling techniques for embedded systems focus

on events that occur in time and the causality relation-
ships between them. Some time ago, one of us proposed
event graphs as a visual formalism for event-oriented mod-
eling [22]. In this paper we introduce Ptera (Ptolemy event
relationship actors), an extension of event graphs supporting
hierarchy and heterogeneity. Ptera is much better suited to
embedded system design, especially to cyber-physical sys-
tems, which are intrinsically heterogenous. In particular,
Ptera models conform to an actor abstract semantics, which
enables hierarchical composition with other models of com-
putation (MoCs) [10], including for example dataflow mod-
els, finite state machines, discrete-event models, continuous-
time models, and imperative programs in a conventional pro-
gramming language. We have implemented Ptera in Ptolemy
II [7], and it is available in open source form.1

The paper is organized as follows. Section 2 describes the
syntax and semantics of flat models, where no hierarchical
composition is involved. Hierarchical models are given in
Section 3, including both hierarchical Ptera models and hi-
erarchical compositions with other MoCs. In Section 4 we
give an illustrative application. We compare Ptera to re-
lated work in Section 5. Additional details about this work
are available in the expanded version at [9].

2. FLAT MODELS
We begin by explaining flat (non-hierarchical) Ptera mod-

els. A flat Ptera model is an attributed graph containing
vertices connected with directed edges. Vertices may be as-
sociated with such attributes as ID, actions, final, initial and
parameters. Edges may be associated with such attributes as
ID, arguments, canceling, delay, guard, initializing, priority
and triggers.

A vertex in a model is called an event. A example model
with two events is shown in Figure 1. The events are repre-
sented by rounded boxes. Each event has a unique identifier
(ID), which is displayed on its icon. In this case, the events’
IDs are Init and Increase.

Variables in a model associate values with names. Each
variable is visually represented as a name-value pair to the

1The Ptera models discussed in this paper are all available
for editing and execution at http://ptolemy.org/ptera.
The PDF version of this paper provides hyperlinks to the
appropriate model in every figure depicting the model. Just
click on the figure to execute and edit the model. There is
no need to pre-install anything. Ptolemy II can be obtained
from http://ptolemy.org.

http://ptolemy.org/ptera
http://ptolemy.org

Figure 1: A simple model with two events.

Figure 2: A model with multiple events.

right of a dot. In the example, there is a single variable with
name P and initial value 0. The initial value is provided by
the model designer. During execution, the variable may be
updated with new values.

Init is an initial event (with the initial attribute set to
true). This is indicated with a filled vertex having a thick
border. At the beginning of an execution, all the initial
events are scheduled to occur at model time 0. An event
queue is used in the execution to hold an unbounded number
of scheduled events. An event is removed from the event
queue and is processed when the model time reaches the
time at which the event is scheduled to occur (called the
time stamp of that event).

Events may be associated with actions that are specified
with a list of assignments separated by semicolons. In Fig-
ure 1, Init has action “P = 0”, which causes the side effect
of setting variable P to 0 when Init is processed. The edge
from Init to Increase is called a scheduling relation. It has
Boolean expression “P < 1” as its guard and 1.0 as its delay
represented by symbol δ. This means, after the Init event
is processed, if P’s value is less than 1 (which is true in this
case), then Increase would be scheduled 1.0 unit of model
time later than the current model time (which is 0). When
Increase is processed at model time 1.0, its action “P = P +
1” is executed and P’s value is increased to 1.

After processing Increase, the event queue becomes empty,
and since no more event is scheduled, the execution termi-
nates. In general, execution terminates when there is no
event left in the event queue.

In the model in Figure 1, it is clear that there is at most
one event in the event queue (either Init or Increase) at any
time. In general, an unbounded number of events can be
scheduled in the event queue.

As another example, execution of the model in Figure 2
requires an event queue of size greater than 1. The Init
event schedules IncreaseA and IncreaseB to occur after 1.0
unit of model time and 2.0 units of model time, respectively.
The guards of the two scheduling relations from Init take the

Figure 3: A model with arguments for the events
and a canceling relation.

default value “true,” and are thus hidden in the visual repre-
sentation. When IncreaseA is processed, it increases variable
A by 1 and reschedules itself, until A’s value reaches 10. The
model-time delay δ on the scheduling relation from A to it-
self is also hidden, because it takes the default value “0.0,”
which means the event is scheduled at the current model
time. Similarly, IncreaseB repeatedly increases variable B
at the current model time, until B’s value reaches 10.

2.1 Arguments
Resembling a C function, an event may have a list of for-

mal arguments (separated by commas). Each argument has
a name and a type (separated by a colon). Figure 3 mod-
ifies Figure 2 by adding arguments k of type int to events
IncreaseA and IncreaseB. These arguments are given values
by the incoming relations and specify the increments to vari-
ables A and B. (The dashed edge in the figure is a canceling
relation, which will be discussed next.)

Each scheduling relation pointing to an event with argu-
ments must specify a list of expressions in its arguments at-
tribute. Those expressions are used to compute the actual
values for the arguments when the event is processed. In
the example, all scheduling relations pointing to IncreaseA
and IncreaseB specify “{1}” in their arguments attributes,
meaning that k should take value 1 when those events are
processed. Values of the arguments declared by an event can
be accessed in the event’s actions and the guards and delays
of the scheduling relations emanating from that event.

2.2 Canceling Relations
A canceling relation is represented as a dashed edge be-

tween events. It can be guarded by a Boolean expression.
Its delay must be 0 and its arguments must be an empty list
“{},” which are both hidden.

When an event with an outgoing canceling relation is pro-
cessed, if the guard is true and the event pointed to has
been scheduled in the event queue, then that scheduled event
would be removed from the event queue immediately with-
out being processed. This yields the effect of canceling a
previously scheduled event. If the event pointed to is sched-
uled multiple times, with multiple instances of it in the event
queue (each of which belongs to the same event but may be
associated with a different list of arguments), then the can-
celing relation causes only the first one in the event queue

ptera/TwoEvents.htm
ptera/MultipleEvents.htm
ptera/ArgAndCancel.htm

to be removed. If the event pointed to is not scheduled, the
canceling relation has no effect.

Figure 3 provides an example of canceling relation. Pro-
cessing the last IncreaseA event (at time 1.0) causes In-
creaseB (scheduled to occur at time 2.0 by the Init event)
to be cancelled. As a result, variable B is never increased.

Canceling relations do not increase expressiveness. In fact,
a model with canceling relations can always be converted
into one without canceling relations, as is shown in [13].
Nonetheless, they can be convenient, making more compact
and understandable models possible.

2.3 Simultaneous Events
Simultaneous events are events in a model that potentially

have instances coexisting in the event queue and that are
scheduled to occur at the same model time.

For example, consider changing both δ’s in Figure 3 to 1.0.
That makes IncreaseA and IncreaseB simultaneous events.
In Ptera, events are processed sequentially. Hence, there are
two questions that we need to address. The first one is which
of IncreaseA or IncreaseB should be executed first, after Init.
Next, once we have chosen one of these to execute, since
there is a self loop on both that schedules another instance
of the same event without delay, we again face the question
of which event to process next.

The first question is resolved with priorities. Init schedules
both IncreaseA and IncreaseB with the same delay δ = 1.0.
Each scheduling relation can be assigned a priority num-
ber. If the left relation has a lower priority number, then
IncreaseA will be processed first.

By default, a scheduling relation has a priority number
0. In the example, no priority numbers are shown, which
implies that the scheduling relations have the same priority
(the default), so we still need a way to resolve the question
of which event to process first. Ptera does this with a second
ordering relation denoted ≤e, defined as the lexical order of
events based on their IDs. Event IDs are unique, so this al-
ways determines an order. That is, IncreaseA ≤e IncreaseB,
because its name would appear first in a dictionary. Thus,
IncreaseA will be processed before IncreaseB.

Once IncreaseA is processed, because of the self loop, it
will post another instance of IncreaseA on the event queue.
This situation is significantly different from the previous one
because this new instance came into existence distinctly af-
ter the instance of IncreaseB that is already on the event
queue. In such situations, Ptera does not use the lexical
ordering of events, but rather follows either a LIFO policy
(last in, first out) property or a FIFO policy (first in, first
out). The choice between these is determined by a user-
settable property of the model. The default policy is LIFO,
for reasons that we will see.

With LIFO, the event scheduled by a later instance of an
event is processed earlier. The opposite occurs with FIFO.
Hence, in our example, with the LIFO policy, 10 instances
of IncreaseA will be processed before the first instance of
IncreaseB is processed. After the 10-th IncreaseA, the can-
celing relation becomes enabled, so the first instance of In-
creaseB will never be processed. At this point, there are no
more events in the event queue and the execution terminates
with final values A=10 and B=0.

With the FIFO policy, the first instance of IncreaseB will
be processed before the second instance of IncreaseA. Under

a) Sequentially perform all tasks

b) Sequentially perform tasks until G is satisfied

Figure 4: Two design patterns for controlling tasks.

this policy, the execution will terminate with values A=10
and B=9.

In practice, LIFO is more useful because it atomically ex-
ecutes a chain of events, where one schedules the next with
no delay. This achieves atomicity in the sense that no event
that is not in the chain interferes with the processing of those
events in the chain. This ensures atomicity without requir-
ing designers to explicitly control critical sections, as is the
case for imperative programming languages and modeling
formalisms like UML Message Sequence charts.

To illustrate this notion of atomicity, consider two design
patterns shown in Figure 4. The design pattern in Figure 4a
is used to sequentially and atomically perform a number of
tasks, assuming the LIFO policy is chosen. Even if other
events exist in the model (which are not shown in the figure),
those events cannot interleave with the tasks. As a result,
intermediate state between tasks is not infected by other
events.

The figure also shows final events, depicted with filled ver-
tices with double-line borders. These are special events that
have the side effect of removing all events in the event queue,
thus forcing termination of the execution of the model.

The design pattern in Figure 4b is used to perform tasks
until the guard G is satisfied. This again assumes a LIFO
policy. After the Start event is processed, all tasks are sched-
uled. In this case the first one to be processed is Task1, be-
cause Task1 ≤e Task2 ≤e Task3. After Task1, if G is true,
End is processed next, which terminates the execution. If G
is not true, then Task2 would be processed. The processing

Figure 5: A model that simulates a car wash system.

of tasks continues until either G becomes true at some point,
or all tasks are processed but G remains false.

To recap, priorities on scheduling relations or lexical or-
dering of event names is used when two simultaneous events
are asserted by a single event. The LIFO or FIFO policy
is used when simultaneous events are asserted by different
instances of events. The LIFO policy enables simple speci-
fication of atomic processing of a sequence of events.

2.4 Illustrative Example: A Car Wash
In this section, we describe a simple example that is a

metaphor for many systems of interest. It is more familiar
than many practical applications, which may be rooted in a
highly technical application domain, and yet is rich enough
to admit elaborations that illustrate the expressiveness of
Ptera. We begin with a simple multiple-server, single-queue
system, described as a car wash.

In a car wash system, a number of car wash machines
share a single queue. When a car arrives, it is placed at the
end of the queue to wait for service by any of the machines.
The machines serve cars in the queue one at a time in a
first-come-first-serve manner. The car arrival intervals and
service times are produced with two stochastic processes.

The model to analyze the number of available servers and
the number of waiting cars over time is provided in Figure 5.
The Servers variable is initialized to 3, which is the total
number of servers. The Queue variable starts with 0, since
no car is waiting in the queue at the beginning. Run is
an initial event. It schedules the Terminate final event to
occur after the amount of time defined by a third variable
SimulationTime.

The Run event also schedules the first instance of the En-
ter event, causing the first car arrival to occur after delay
“3.0 + 5.0 * random(),” where random() is a function that
returns a random number in [0, 1) with a uniform distribu-
tion. When Enter occurs, its action increases the queue size
in the Queue variable by 1. The Enter event schedules itself
to occur again. It also schedules the Start event if there is
any available server. The LIFO policy guarantees both En-
ter and Start to be processed atomically, so it is not possible
for the value of the Servers variable to be changed by any

other event in the queue after that value is tested by the
guard of the scheduling relation from Enter to Start.

The Start event simulates car washing by decreasing the
number of available servers and the number of cars in the
queue. The service time is “5.0 + 20.0 * random().” After
that amount of time, the Leave event occurs, which rep-
resents the finish of service for that car. Whenever a car
leaves, the number of available servers must be greater than
0, so the Leave event immediately schedules Start if there
is at least one car in the queue. Again, due to atomicity
provided by the LIFO policy, testing for the queue size and
changing it in the following Start event would not be inter-
fered with by any other event in the event queue.

Without the Terminate event prescheduled at the begin-
ning, an execution of the model would not terminate because
the event queue would never be empty.

3. HIERARCHICAL MODELS
Hierarchy can mitigate complexity and improve reusabil-

ity in models. An abstract semantics has been defined in
Ptolemy II for specifying the execution behavior of hierar-
chical heterogeneous models [7]. The semantics enables hi-
erarchical composition of distinct models of computation, as
described in detail in [10]. The abstract semantics consists
of 1) an execution policy with designated extension points,
and 2) a protocol containing high-level specifications of the
expected behavior at those extension points.

Under the actor abstract semantics, a model component
M is executed according to the following (simplified) policy.
M may be an atomic component within a model, or may it-
self be a composition of other components, in which case it
is called a composite actor. The policy is extensible in that
the methods invoked may perform arbitrary (finite) compu-
tation. Some of the methods have Boolean return values.

◦ Execute M :
Initialize M
while model is running:

Fire M zero or more times
if M was fired at least once, Postfire M

Finalize M

For model M to be executed, Initialize, Fire, Postfire and
Finalize must be defined. These methods are part of the
definition of the component.

If the hierarchical component contains an annotation called
a director, then it is said to be opaque, and it executes ex-
actly as if it were an atomic component. In this case, the
Initialize, Fire, Postfire, and Finalize methods are provided
by the director, which will typically also invoke those meth-
ods on the contained actors. The way the director invokes
the methods for the contained actors depends on the model
of computation that the director implements. In general, for
each contained actor, invocation of the methods should fol-
low the sequence in the above execution algorithm, though
the sequences for different contained actors may be inter-
leaved. We have implemented a Ptolemy II director that
realizes the Ptera semantics.

The strictest form of the abstract semantics imposes a key
constraint on these methods, which is that the Fire method
not change the state of an actor [10]. Our Ptera director
realizes the loose abstract semantics; the Fire method up-
dates the event queue, and therefore changes the state of
the system. This results in some constraints on how Ptera

ptera/CarWash.htm

Figure 6: A hierarchical model that simulates a car
wash system with two settings.

models can be used within models of computation that iter-
ate to a fixed point, such as synchronous reactive (SR) and
continuous-time. See [10] for details.

An additional part of the abstract semantics enables con-
trol of the passage of time by components in the model. In
particular, a fireAt method is defined as a callback that can
be invoked in the Initialize and Postfire methods to request
firing from the container. It takes as the first parameter the
model that issues the request and as the second parameter
a model time when firing of that model should occur. That
model time should be equal to or greater than the current
model time. For example, when Postfire is invoked with
model M contained in M ′, fireAt may be issued with pa-
rameters M and t. The director of M ′ receives that request
and schedules to fire M at model time t.

An immediate consequence of this architecture is that
Ptera models may hierarchically contain Ptera submodels,
as we will discuss next.

3.1 Hierarchical Ptera Models
As a demonstration of hierarchical models, Figure 6 is a

modification from Figure 5. Its top level simulates an execu-
tion environment, which has a Run event as the only initial
event, a Terminate event as a final event, and a Simulate
event associated with a submodel. The submodel simulates
the car wash system with the given number of servers.

The two scheduling relations pointing to the Simulate
event have hollow arrow heads, which reveal the fact that
their initializing attributes are set to true. For that rea-
son, they are called initializing scheduling relations. They
make the submodel initialized each time the Simulate event
is processed. In this example, the Simulate event is pro-
cessed twice, causing two instances of the Init event to be
scheduled in the submodel’s local event queue. They are

the start of two concurrent simulations, one with 3 servers
and the other with 1 server. The priorities of the initializ-
ing scheduling relations are not explicitly specified. Because
the two simulations are independent, the order in which they
start has no observable effect. In fact, the two simulations
may even occur concurrently.

Parameter i for the Simulate event distinguishes the two
simulations. Compared to the model in Figure 5, the Servers
variable in the submodel has been extended into an array
with two elements. Servers(0) refers to the number of servers
in simulation i = 0, while Servers(1) is used in simulation i =
1. The Queue variable is enhanced in the same way. Each
event in the submodel also takes a parameter i and supplies
the value of i that it receives to the next events that it
schedules. This ensures that the events and variables in one
simulation are not affected by those in the other simulation,
even though they share the same model structure.

Let M and m be the top-level model and the submodel,
respectively. The execution starts by running the execution
algorithm with M . At the beginning, M is initialized, so its
initial event Run is placed in its event queue denoted by QM .
WhenM is fired the first time, its Run event is processed and
two instances of the Simulate event and a Terminate event
are scheduled in QM . Postfire of M returns true because
there are events remaining in QM .

In the second iteration, M is fired and postfired again.
In the firing, assume the instance of Simulate event to be
processed is Simulate0. (As mentioned above, an opposite
assumption does not change the final result.) m is initialized
for the first time. In its initialization, m schedules the Init
event in its event queue Qm. It also issues a fireAt request
to M , requesting M to fire it at the current model time.
After initializing m, the firing of M finishes.

In the third iteration, the submodel m is fired and post-
fired. (Simulate1 remains in QM , because fireAt requests are
always ordered before event instances with the same time
stamp.) In m’s firing, the Init event is processed, which
schedules an Enter event in Qm after a random delay. In
m’s postfire, another fireAt request is issued to M .

In the fourth iteration, Simulate1 is processed. This causes
m to be again initialized (due to the initializing scheduling
relation). Another instance of the Init event is scheduled in
Qm. That instance is processed in the fifth iteration.

The execution continues until the model time is eventu-
ally advanced to 1000 and the Terminate event originally
scheduled in QM is processed.

As a remark, one can conceptually execute multiple in-
stances of a submodel by initializing it multiple times. How-
ever, the event queue and variables are not copied. There-
fore, the variables need to be enhanced into arrays and an
extra index parameter (i in this case) needs to be provided
to every event.

3.2 Heterogeneous Composition
Since the Ptera director conforms with the actor abstract

semantics, Ptera models can be composed hierarchically with
other models of computation such as discrete-event (DE)
models and finite state machines (FSMs). We now demon-
strate the concept with two examples. One is to embed
Ptera in DE and the other is to embed Ptera in DE and
FSM in Ptera. The general idea behind is extremely pow-
erful because it allows designers to choose a convenient and
expressive model of computation to model each part of the

ptera/HierarchicalCarWash.htm

their systems, and to obtain a well-defined semantics for the
overall composition.

Compared to Ptera models, DE models are a different
kind of discrete-event models. Actors are visually repre-
sented with boxes, ports of actors are triangles, and the lines
between ports are communication channels. Syntactically,
this is quite different from Ptera models, where the boxes
are events and the relations interconnecting them represent
scheduling actions.

Actors perform computation on the data received at their
input ports, and produce data via their output ports. Those
data are wrapped in events that also carry time stamps rep-
resenting the model time at which they are produced. The
events in DE, which we call DE events, are not visible in the
model design, and are different from events in Ptera shown
as vertices.

A DE model is a composite actor with a DE director,
which implements a rigorous DE semantics [15]. The DE
director invokes the Fire method of actors to have them react
to input events in time-stamp order. It accomplishes this,
like Ptera, with an event queue, which temporarily stores DE
events received at the input ports of actors in that composite
actor, as well as the fireAt requests issued by those actors.
When the model time becomes equal to the time stamp of
a DE event (or a fireAt request), the DE director fires the
corresponding actor and provides it with the DE event.

Figure 7 shows a model that uses DE at its top level and
contains Ptera submodels. In Figure 7a, boxes are actors
except that the filled box with caption “DE Director” rep-
resents a DE director, which is essentially an attribute that
defines the DE semantics for the diagram. CarGenerator
and Servers are two composite actors associated with Ptera
submodels. Plotter is an atomic actor defined in Java.

Figure 7b shows the internal design of CarGenerator. The
Init event schedules the first Arrive event after a random
delay. Each Arrive event schedules the next one. Whenever
it is processed, the Arrive event generates a car arrival signal
and sends it via the output port using assignment “output =
1” with the left hand side being the port name and the right
hand side being an expression that computes the output
value. In this case, the value 1 is unimportant and only the
presence of a value at the output port is interesting.

Figure 7c shows the internal design of Servers. It is sim-
ilar to the previous car wash models, except that there is
an extra carInput port to receive DE events representing
car arrival signals from the external and the Enter event
is scheduled to handle inputs via that port. No assump-
tion is made in the Servers component about the source of
the car arrival signals. At the top level, the connection from
CarGenerator’s output port to Servers’ input port makes ex-
plicit the producer-consumer relationship. This separation
of concerns leads to a more modular and reusable design.

The Plotter at the top level plots the outputs from Servers
in a separate window. An example plot obtained by execut-
ing the model to time 1000 is provided in Figure 8, where
the upper (blue) curve represents the number of waiting cars
over time, and the lower (red) curve represents the number
of available servers. For this plot, the car interarrival time is
set to “1.0 + 5.0 * random().” The system is unstable with
an unbounded queue.

In the example, when fired the first time at model time 0,
the two submodels process their Init events. In CarGenera-
tor, an Arrive event is scheduled in its event queue. A new

a) Top level

b) Internal design of CarGenerator

c) Internal design of Servers

Figure 7: A car wash model using DE and Ptera in
a hierarchical composition.

fireAt request is issued to the DE director in postfire that
requests to fire again in the future when the model time
reaches the time of the Arrive event. In Servers, process-
ing the Init event causes the Servers and Queue variables to
be reset to their initial values. The Enter event is sched-
uled with the delay “Infinity” and is registered to receive
inputs at carInput port with the triggers attribute of the
scheduling relation. Postfire of this submodel does not issue
fireAt request but simply returns true. This is because, even
though the Servers component has events remaining in its
event queue, it cannot decide the time when it should be
fired again. The DE director at the top level should fire it
when a DE event is received at its input port.

In postfire, the DE director advances model time to the
time of the fireAt request from CarGenerator. In the next

ptera/CarsAndServers.htm
ptera/CarsAndServers.htm
ptera/CarsAndServers.htm

3
x10

0
10

20

30

40

50

60

70

80

90

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 8: Plotter output for Figure 7, where Inter-
arrivalTime = 1.0 + 5.0 * random().

firing, the DE director fires CarGenerator, which processes
the Arrive event and generates a DE event to the output
port. That DE event is tagged with a time stamp equal
to the current model time, and is stored temporarily in the
DE director’s event queue. When CarGenerator postfires, it
schedules the Arrive again and issues another fireAt request.
The DE director also fires the Servers submodel since it has
a DE event at its input port. The latter processes the Enter
event, which is triggered by the input.

The Plotter passively waits for DE events from Servers.
Every time it is fired, it is provided with two DE events, one
at each channel of the input port, because Servers always
generates DE events at both output ports at the same time.
In reaction, Plotter extracts the values from those DE events
and plots them in a separate window.

In general, multiple port names may be specified in a trig-
gers attribute, separated by commas. This can be used to
schedule an event to react to different external inputs. The
triggers attribute is used in conjunction with the delay δ to
determine when the event is processed. Let the triggers at-
tribute be “p1, p2, · · · , pn.” The event is processed when the
model time is δ-greater than the time at which the schedul-
ing relation is evaluated or one or more DE events are re-
ceived at any of p1, p2, · · · , pn. To schedule an event that
indefinitely waits for input, “Infinity” may be used as the
value of δ.

To test whether a port actually has an input, a special
Boolean variable whose name is the port name followed by
string “ isPresent” can be accessed. To refer to the input
value available at a port, the port name may be used in an
expression.

For example, the Enter event in Figure 7c is scheduled to
indefinitely wait for DE events at the carInput port. When
one is received, the Enter event is processed ahead of its
scheduled time and its action increases the queue size by 1.
In that particular case, the value of the input is ignored.

To send DE events via output ports, assignments can be
written in the actions with port names on the left hand side
and expressions that compute the values on the right hand
side. The time stamps of the outputs are always equal to
the model time at which the actions are executed.

3.3 Composition with FSMs
Ptera models can also be composed with untimed models

such as FSMs (finite state machines). When a Ptera model
contains an FSM submodel associated with an event, it can

a) Top level

b) Internal design of CarGenerator

c) Internal design of Update

Figure 9: A car wash model using DE, Ptera and
FSM in a hierarchical composition.

fire the FSM when that event is processed and when inputs
are received at its input ports.

The opposite composition, having Ptera submodels be re-
finements of states in an FSM, is also interesting because
by changing states, the submodels may be disabled and en-
abled, and the execution can switch between modes. That
style of composition is addressed by the Ptolemy II modal
models [17], which interact well with DE models [20].

To demonstrate composition of Ptera and FSM, consider
the case where drivers can perceive the number of cars wait-
ing in the queue and may avoid entering the queue if there
have already been too many waiting cars. That leads to a
lower arrival rate (or equivalently, longer interarrival time
in average). Conversely, if there are only few or no waiting
cars, the drivers would always enter the queue, resulting in
a higher arrival rate.

The model in Figure 7 is modified for this scenario and
the revised model is shown in Figure 9. Figure 10 shows
the result of executing the new model. At the top level,
the queueOutput port of Servers (whose internal design is
the same as Figure 7c) is fed back to the queueInput port of
CarGenerator. The FSM submodel in Figure 9c is associated
with the Update event in CarGenerator. It inherits the ports
from its container, allowing the guards of its transitions to
test the inputs received at the queueInput port. In general,

ptera/CarsAndServers.htm
ptera/DEAndFSM.htm
ptera/DEAndFSM.htm
ptera/DEAndFSM.htm

3
x10

0

2

4

6

8

10

12

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 10: Plotter output for the model in Figure 9.

actions in an FSM submodel can also produce data via the
output ports.

At the time when the Update event of CarGenerator is
processed, the FSM submodel is initialized to be in its ini-
tial state. When fired the first time, the FSM moves into the
Fast state and sets the minimum interarrival time to be 1.0.
Since then, the interarrival time is generated with expres-
sion “1.0 + 5.0 * random().” Notice that the min variable
is defined in CarGenerator, and a scoping rule enables the
contained FSM to read from and write to that variable.

Postfire of the FSM always returns true, because there is
no final state. The FSM would be fired again when either
the Update event is processed again (which does not hap-
pen in this example) or when input is received at any input
port. When the Servers composite actor sends out the num-
ber of waiting cars via its queueOutput port, the number is
transferred to the queueInput port of CarGenerator by the
top-level DE model and is made available to the FSM sub-
model. The FSM submodel is fired at that time. It may or
may not change state depending on whether that received
number exceeds the bounds.

In general, when a Ptera model receives input at a port, all
the initialized submodels are fired, regardless of the models
of computation that those submodels use.

4. EXAMPLE APPLICATION
As a general-purpose model of computation, Ptera can

be applied to a wide range of applications. It is especially
suitable for modeling timed sequential processes. Hierarchi-
cal composition with other models of computation, such as
dataflow and DE, allows for concurrency when desired. In
this section, we give one illustrative application drawn from
[3], simplified enough to be fully described here. The goal of
Ptera, however, is to represent much more complex systems
in an understandable and analyzable way.

This example models a traffic light and pedestrian cross
lights at a 4-way intersection. The Traffic Light model con-
tains separate components for the 4 car lights, which turn
red, green and yellow after every preconfigured time dura-
tion. In this model, each Car Light component is connected
to a Pedestrian Light via a wireless channel. The wireless
signals are modeled with the Wireless director in Ptolemy
II, a variant of DE director that transfers data over models
of wireless channels that can reflect latencies and losses that
are realistic in such channels.

Here we focus on the part of Car Light component shown

in Fig. 11. It illustrates how Ptera can be used to model
complex control systems. The Init event is the only initial
event to be fired at model time 0. Depending on the ini-
tial state of the car light, it schedules Red, Green or Yellow
to occur immediately. Those events set the car light to the
corresponding color. The PedRequest port receives pedes-
trian requests. According to the specification, when the first
pedestrian arrives at the car light and if the car light is green
at the moment, the pedestrian presses a button to request
crossing. Handling of the requests is according to the design
policy. When a request is handled, a data value is sent to
the PedReqeust port. The scheduling relation from Green
to Yellow is set to have delay “GreenDuration” (a constant
defined at a higher level of the model hierarchy) and its trig-
gers attribute is set to “PedRequest.” This means the light
turns yellow either the GreenDuration expires, or a pedes-
trian request needs to be handled.

A similar design is used between the Red and Green events.
When the car light is red, it may receive an external event
at the OrthogonalRequest port, signifying that a pedestrian
request is handled by a car light in the orthogonal direction.
In that case, the orthogonal car light turns yellow immedi-
ately and informs this car light. After the yellow duration,
the orthogonal car light turns red, and this car light should
turn green. Here we assume RedDuration to be greater than
YellowDuration, as it is in all the cases we have encoun-
tered. The scheduling relation from Red to an additional
event RedToGreen takes place when the amount of time
“RedDuration − YellowDuration” expires, or a car light in
the orthogonal direction handles a pedestrian request. In
either case, this car light turns green after YellowDuration.

A third input port, CarCount, receives the numbers of
cars waiting for this car light. It receives increasing consec-
utive numbers when the light is red according to a Poisson
arrival process, and decreasing consecutive numbers when
the light is green. We assume it takes constant time for
each car to cross the intersection, whereas all waiting pedes-
trians cross in negligible time. To reflect this, when the car
light turns green, the HandleCarCount event is scheduled to
listen to inputs at the CarCount port. The Cross event is
also scheduled to occur immediately to allow the first wait-
ing car to cross, if any. Cross repeatedly schedules itself
after every CrossTime period. If no car is waiting, the next
Cross event is cancelled. If a car arrives when the light is
still green, a new Cross event is scheduled if none has already
been scheduled (which is detected with the CrossScheduled
variable being false).

The two output ports send out controlling signals. Car-
Trigger informs the car counting component that a car can
leave the waiting queue, if any. It has no effect if the queue is
already empty. The Light port outputs signals that controls
the car light hardware device.

Despite the complexity of the control logic as described in
the specification, the car light component remains in man-
ageable size. An equivalent FSM would have many more
states than the events here. From time to time in an execu-
tion, multiple events are scheduled in the event queue, and
using an FSM, it would be required to explicitly model each
possible state of the event queue.

5. RELATED WORK
A classic event-oriented modeling formalism is finite state

machines (FSMs). Ptera has some of the flavor of FSMs,

ptera/DEAndFSM.htm

Figure 11: A Car Light component in the Traffic Light model

but is more expressive. In Ptera, the state is implicit in the
event queue, and the state space is not necessarily finite. In
fact, since Ptera extends event graphs, and event graphs are
Turing complete [21], Ptera is a Turing complete modeling
language. An interesting angle for future inquiry would de-
termine how to apply recent research on checking models
with infinite states [5] to Ptera models.

Ptera also addresses an awkwardness that sometimes arises
in FSM models. In particular, for applications where the
FSM must be receptive (i.e., there are no constraints on
the inputs), the FSM model must specify in every state the
reactions to all possible inputs. Ptera provides a more con-
venient and (we believe) less error-prone notation because
multiple events can be scheduled to handle different inputs.

UML activity diagrams are more recent than the event
graphs that Ptera is based on. Ptera models have some com-
monality with activity diagrams, and with relatively minor
syntactic changes, activity diagrams can be translated into
Ptera models. Ptera models are more expressive, however,
because they support extended event queues.

For event graphs, there have been extensions to incorpo-
rate hierarchy. Two approaches are discussed in [23]. They
both require adjusted semantics for submodels. Therefore,
an event graph originally designed to be at the top level can-
not be easily reused as a submodel in a bigger environment.
In [4], a third attempt is reported, in which a listener pattern
is introduced as an extra gluing mechanism for composing
event graphs. Only two levels are allowed in a composition
hierarchy – a specicial gluing model at the top level, and
event graphs contained in it. We believe that Ptera mod-
els are more flexible, because they can be freely composed
with any other Ptera models as well as other types of mod-

els, such as dataflow, FSM, and actor-oriented discrete-event
models [15].

Statecharts, introduced by Harel [12] and subsequently re-
alized in UML, SyncCharts [1], and many other variants, are
an extended form of FSMs that support hierarchical compo-
sition and concurrency (by means of synchronous composi-
tion). Ptera models define a total ordering of event handling,
and therefore do not have the concurrency evident in Stat-
echarts or other synchronous reactive formalisms. However,
because Ptera models conform with the actor abstract se-
mantics, they can be composed within concurrent models
of computation, including synchronous reactive, discrete-
events, and continuous-time models using the techniques
given in [18]. Ptera separates concurrency concerns from
event handling.

Other hierarchical modeling languages are DEVS (Dis-
crete Event System Specification) [6] and hierarchical Petri
nets [8], as well as many familiar modeling languages like
Simulink and LabVIEW. Hierarchical heterogeneous com-
position is studied in research projects such as ForSyDe [14],
SPEX [19] and ModHel’X [11]. Ptera could presumably
become one of the available modeling formalisms in these
frameworks.

UML sequence diagrams also have an event-oriented fla-
vor, but they are deeply rooted in the notion of composing
sequential processes and threads. Ptera provides a more
natural, understandable, and scalable way of modeling and
reasoning about event interactions because it is less vulner-
able to the conceptual complexities of threads [16].

BIP, like Ptera, is event oriented and supports heteroge-
neous models [2]. However, its approach to heterogeneity is
less hierarchical. The principle behind BIP is to compose
state machines using rendezvous interactions with priorities

ptera/Intersection/Intersection.htm

that have global significance in the model. We believe that
Ptera will yield more intuitive and understandable models,
though such a claim is extremely difficult to substantiate.

6. CONCLUSION
We introduce the Ptera model of computation, an exten-

sion of event graphs, and we provide algorithms for execut-
ing models. We show that Ptera models can be composed
hierarchically with other models of computation, and well-
defined semantics can be obtained by employing an actor
abstract semantics for model execution. Simple, suggestive
examples are given to demonstrate the behavior of certain
types of composition.

In practice we have encountered various applications. In
this paper we emphasize the strengths of Ptera in modeling
complex control systems, sequential workflows and timed
systems with unbounded states. We provide our assessment
based on a thorough comparison with existing modeling lan-
guages including FSMs (finite state machines), UML State-
charts and activity diagrams.

7. ACKNOWLEDGEMENTS
The authors would like to acknowledge very helpful com-

ments and suggestions from Elizabeth Latronico (Bosch).
We also thank Christopher Brooks for packaging the models
for on-line access.

8. REFERENCES
[1] C. André. SyncCharts: a visual representation of

reactive behaviors. Technical Report RR 95–52, rev.
RR (96–56), University of Sophia-Antipolis, April
1996.

[2] A. Basu, M. Bozga, and J. Sifakis. Modeling
heterogeneous real-time components in BIP. In
International Conference on Software Engineering and
Formal Methods (SEFM), pages 3–12, Pune, 2006.

[3] C. Brooks, C. Cheng, T. H. Feng, E. A. Lee, and R. v.
Hanxleden. Model engineering using multimodeling. In
1st International Workshop on Model Co-Evolution
and Consistency Management (MCCM 2008),
Toulouse, France, September 2008.

[4] A. H. Buss and P. J. Sanchez. Building complex
models with LEGOs (listener event graph objects).
Winter Simulation Conference (WSC 02), 1:732–737,
December 2002.

[5] E. M. Clarke, H. Jain, and N. Sinha. Grand challenge:
Model check software. In Verification of Infinite-State
Systems with Applications to Security (VISSAS),
pages 55–68, Timisoara, Romania, March 2005.

[6] A. I. Concepcion and B. P. Zeigler. DEVS formalism:
A framework for hierarchical model development.
IEEE Transactions on Software Engineering (TSE),
14(2):228–241, February 1988.

[7] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu,
J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong.
Taming heterogeneity – the Ptolemy approach.
Proceedings of the IEEE, 91(1):127–144, 2003.

[8] R. Fehling. A concept of hierarchical Petri nets with
building blocks. In Proceedings of the 12th
International Conference on Application and Theory
of Petri Nets, pages 148–168, London, UK, 1993.
Springer-Verlag.

[9] T. H. Feng, E. A. Lee, and L. W. Schruben. Ptera: An
event-oriented model of computation. Technical
Report UCB/EECS-2010-40, EECS Department,
University of California, Berkeley, Apr 2010.

[10] A. Goderis, C. Brooks, I. Altintas, E. A. Lee, and
C. Goble. Heterogeneous composition of models of
computation. Future Generation Computer Systems,
25(5):552–560, 2009.

[11] C. Hardebolle and F. Boulanger. ModHel’X: A
component-oriented approach to multi-formalism
modeling. In Model Driven Engineering Languages
and Systems (MoDELS), pages 247–258, Nashville,
TN, USA, September 2007.

[12] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming,
8(3):231–274, 1987.

[13] R. G. Ingalls, D. J. Morrice, and A. B. Whinston.
Eliminating canceling edges from the simulation graph
model methodology. In WSC ’96: Proceedings of the
28th conference on Winter simulation, pages 825–832,
Washington, DC, USA, 1996. IEEE Computer Society.

[14] A. Jantsch and I. Sander. Models of computation and
languages for embedded system design. IEEE
Proceedings on Computers and Digital Techniques,
152(2):114–129, 2005.

[15] E. A. Lee. Modeling concurrent real-time processes
using discrete events. Annals of Software Engineering,
7(1–4):25–45, 1999.

[16] E. A. Lee. The problem with threads. IEEE
Computer, 39(5):33–42, 2006.

[17] E. A. Lee. Finite state machines and modal models in
Ptolemy II. Technical Report UCB/EECS-2009-151,
EECS Department, University of California, Berkeley,
November 1 2009.

[18] E. A. Lee and H. Zheng. Leveraging synchronous
language principles for heterogeneous modeling and
design of embedded systems. In EMSOFT, Salzburg,
Austria, 2007. ACM.

[19] Y. Lin, R. Mullenix, M. Woh, S. Mahlke, T. Mudge,
A. Reid, and K. Flautner. SPEX: A programming
language for software defined radio. In Software
Defined Radio Technical Conference and Product
Exposition, Orlando, November 2006.

[20] J. Liu and E. A. Lee. A component-based approach to
modeling and simulating mixed-signal and hybrid
systems. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 12(4):343–368,
October 2002.

[21] L. Schruben and E. Yücesan. Transforming Petri nets
into event graph models. In Winter Simulation
Conference (WSC 94), pages 560–565, San Diego, CA,
USA, 1994. Society for Computer Simulation
International.

[22] L. W. Schruben. Simulation modeling with event
graphs. Communications of the ACM, 26(11):957–963,
1983.

[23] L. W. Schruben. Building reusable simulators using
hierarchical event graphs. In Winter Simulation
Conference (WSC 95), pages 472–475, Los Alamitos,
CA, USA, December 1995. IEEE Computer Society.

	Introduction
	Flat Models
	Arguments
	Canceling Relations
	Simultaneous Events
	Illustrative Example: A Car Wash

	Hierarchical Models
	Hierarchical Ptera Models
	Heterogeneous Composition
	Composition with FSMs

	Example Application
	Related Work
	Conclusion
	Acknowledgements
	References

