Ptera: An Event-Oriented Model of Computation

Thomas Huining Feng
Edward A. Lee
Lee W. Schruben

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-40
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-40.html

April 10, 2010

Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which receives support from
the National Science Foundation (NSF awards #CCR-0225610 (ITR),
#0720882 (CSR-EHS: PRET) and #0720841 (CSR-CPS)), the U. S. Army
Research Office (ARO #W911NF-07-2-0019), the U. S. Air Force Office of
Scientific Research (MURI #FA9550-06-0312 and AF-TRUST #FA9550-06-
1-0244), the Air Force Research Lab (AFRL), the Multiscale Systems
Center (MuSyc) and the following companies: Agilent, Bosch, National
Instruments, Thales, and Toyota.

Ptera: An Event-Oriented Model of Computation

Thomas Huining Feng Edward A. Lee
Oracle Corporation EECS, UC Berkeley
thomas.feng@oracle.com eal@eecs.berkeley.edu

Lee W. Schruben
IEOR, UC Berkeley
lees@berkeley.edu

April 10, 2010

Abstract

In event-oriented modeling, designers focus on the events that occur in
time and on the causality relationship between events. This practice com-
plements class-oriented, object-oriented, actor-oriented and state-oriented
approaches. To facilitate event-oriented modeling, we have extended event
graphs to create Ptera (Ptolemy event relationship actors), which we show
to be appropriate for modeling complex discrete-event systems. A key ca-
pability is that Ptera models conform with an actor abstract semantics
that permits hierarchical composition with other models of computation
such as discrete-event actors, dataflow, process networks and finite state
machines. This enables their use in complex system design, where not ev-
ery aspect of the system is best described with event-oriented modeling.

1 Introduction

Event-oriented modeling allows designers to focus on events that occur in a
process and the causality relationship between events. In the Unified Modeling
Language (UML), activity diagrams can be considered event-oriented models.
In an activity diagram, a block represents an activity, and an arrow from one
activity to another designates the causality relationship between the two. A
diamond shape is a special activity that tests a certain condition, and causes
either the activity on its true branch or that on its false branch to take place
next. However, it does not allow more than one branch to be taken at a time,
and therefore the run-time state is entirely captured by the single current ac-
tivity and the values of the global variables. Though activity diagrams are easy
to understand, we realize that they are not always expressive enough for prac-
tical applications. Examples of its limitations are the lack of a notion of time,
inability to schedule multiple future activities, the lack of support for model
hierarchy, and the lack of concurrency.

mailto:thomas.feng@oracle.com
mailto:eal@eecs.berkeley.edu
mailto:lees@berkeley.edu

In [1], one of us proposed event graphs as a visual formalism for event-
oriented modeling. Blocks in an event graph are events with optional textual
actions. Directed edges between events represent scheduling relations that can
be guarded by Boolean expressions. Event graphs are timed, and model-time
delays can be associated with scheduling relations. There is an event queue
for each event graph that is not explicitly shown in the visual representation.
In each step of an execution, the execution engine removes the first imminent
event from the event queue and processes it. The actions associated with that
event are executed as a side effect, and events that it schedules with outgoing
scheduling relations are inserted into the event queue. We find event graphs
more expressive and more suitable for specifying timed systems than UML ac-
tivity diagrams.

In this paper we introduce Ptera (Ptolemy event relationship actors) as a
composable modal of computation that extends the existing event graphs. It
has the following key extensions:

e Composition of Ptera models forms a hierarchical model, which can be
flattened to obtain an equivalent model without hierarchy.

e Ptera models conform with an actor abstract semantics, which we will
explain, that permits them to contain or be contained by other types of
models, making it possible to create hierarchical heterogeneous designs.

e An interface consisting of parameters and input and output ports is re-
vealed to the outside. Changes on the parameter values and arrival of
data at input ports can trigger events that have been registered to react
to them. Ptera models become actors.

e Actions of an event can be customized by the designer with programs in
an imperative language (such as Java or C) conforming to a protocol.

We have implemented Ptera in Ptolemy II [13], and it is available in open source
form.?

There have been various extensions to event graphs that aim to incorporate
hierarchy into them. Two approaches are discussed in [2]. One is to associate
submodels with scheduling relations. The only meaningful output of a sub-
model is a number used as the model-time delay for the scheduling relation.
Another approach is to associate submodels with events instead of scheduling
relations [3]. Processing such an event causes the unique start event in the
submodel to be scheduled. That start event may schedule further events in
the submodel. When a predetermined end event is processed, the execution of
the submodel terminates, and the event that the submodel is associated with

n multi-threaded simulation, multiple event queues may be used, which is out of the
scope of this paper.

2The Ptera models discussed in this paper are all available for editing and execution at
http://ptolemy.org/ptera. The PDF version of this paper provides hyperlinks to the appro-
priate model in every figure depicting the model. Just click on the figure to execute and edit
the model. Ptolemy II can be obtained from http://ptolemy.org.

http://ptolemy.org/ptera
http://ptolemy.org

guard: P <1 eP:0
5:1.0

Init Increase
{P=0} {P=P+1}

Figure 1: A simple model with two events that can be executed with a size-one
event queue.

is considered processed. In [4], a third attempt is reported, in which a listener
pattern is introduced as an extra gluing mechanism for composing event graphs.
We believe that Ptera models are more flexible because they can be freely com-
posed with heterogeneous models such as dataflow [5], finite state machines, and
actor-oriented discrete-event models [6, 7].

The remaining sections are organized as follows. In Section 2, we discuss
the syntax and semantics of flat models, where no hierarchical composition
is involved. They are generalized into hierarchical models in Section 3. In
Section 4, we demonstrate two types of heterogeneous hierarchical composition,
and use an abstract semantics to explain their execution behavior. In Section 5
we provide three practical applications. Our work is compared to related work
in Section 6. A conclusion is provided in Section 7.

2 Syntax and Semantics of Flat Models

A flat Ptera model is an attributed graph containing vertices connected with
directed edges. Vertices may be associated with such attributes as ID, actions,
final, initial and parameters. Edges may be associated with such attributes as
ID, arguments, canceling, delay, guard, initializing, priority and triggers. All
these attributes are included in the following discussion.

A hierarchical Ptera model is a generalization of flat models since the vertices
in it may be additionally associated with a graph that represents a submodel.
Submodels may themselves be Ptera models, and in general, they may also be
models in other models of computation, such as FSMs (finite state machines),
actor models, class diagrams and even Java code. The only requirement is that
their behavior can be defined in an abstract semantics studied in the Ptolemy
project, explained below.

Flat models are a simpler kind of model in which vertices are not associated
with submodels.

2.1 Introductory Examples

A vertex in a model is called an event. A example model with two events is
shown in Figure 1. Each event has a unique identifier (ID), which is displayed
on its icon. In this case, the events’ IDs are Init and Increase.

ptera/TwoEvents.htm

oA 0 eB:0

IncreaseA IncreaseB
{A=A+1} {B=B+1}
guard: A< 10 guard: B <10

Figure 2: A model with multiple events in the event queue.

Variables in a model associate values with names. Each variable is visually
represented as a name-value pair to the right of a dot. In the example, there is a
single variable with name P and initial value 0. The initial value is provided by
the model designer and is shown in the static model design. During execution,
the variable may be updated with new values.

Init is an nitial event (with the initial attribute set to true). This is indicated
with a filled vertex having a thick border. At the beginning of an execution, all
the initial events are scheduled to occur at model time 0. (As discussed later,
even though they all conceptually occur at time 0, there is a well-defined order.)
An event queue exists in the execution that can hold an unbounded number of
scheduled events. An event is removed from the event queue and is processed
when the model time reaches the time at which the event is scheduled to occur
(called the time stamp of that event).

Events may be associated with actions that are specified with a list of as-
signments separated by semicolons. In Figure 1, Init has action “P = 0”7, which
causes the side effect of setting variable P to 0 when Init is processed. The edge
from Init to Increase is called a scheduling relation. It has Boolean expression
“P < 1”7 as its guard and 1.0 as its delay represented by symbol §. This means,
after the Init event is processed, if P’s value is less than 1 (which is true in this
case), then Increase would be scheduled 1.0 unit of model time later than the
current model time (which is 0). When Increase is processed at model time 1.0,
its action “P = P 4 1”7 is executed and P’s value is increased to 1.

After processing Increase, the event queue becomes empty, and since no more
event is scheduled, the execution terminates. In general, execution terminates
when there is no event left in the event queue.

In the model in Figure 1, it is clear that there is at most one event in the
event queue (either Init or Increase) at any time. In general, an unbounded
number of events can be scheduled in the event queue.

As another example, execution of the model in Figure 2 requires an event
queue of size greater than 1. The Init event schedules IncreaseA and IncreaseB
to occur after 1.0 unit of model time and 2.0 units of model time, respectively.

ptera/MultipleEvents.htm

e A0 eB:0

5:2.0
arguments: {1}

5:1.0
arguments: {1}

IncreaseB
(k:int)
{B=B+k}

IncreaseA
(k:int)
{A=A+k}

~

\~_—’

guard: A >=10

guard: A< 10 guard: B <10
arguments: {1} arguments: {1}

Figure 3: A model with arguments for the events and a canceling relation.

The guards of the two scheduling relations from Init take the default value
“true,” and are thus hidden in the visual representation. When IncreaseA is
processed, it increases variable A by 1 and reschedules itself, until A’s value
reaches 10. The model-time delay § on the scheduling relation from A to itself
is also hidden, because it takes the default value “0.0,” which means the event is
scheduled at the current model time. Similarly, IncreaseB repeatedly increases
variable B at the current model time, until B’s value reaches 10.

2.2 Arguments

Resembling a C function, an event may have a list of formal arguments (sep-
arated by commas). Each argument has a name and a type (separated by a
colon). Figure 3 modifies Figure 2 by adding arguments k of type int to events
IncreaseA and IncreaseB. These arguments are given values by the incoming
relations and specify the increments to variables A and B. (The dashed edge in
the figure is a canceling relation, which will be discussed next.)

Each scheduling relation pointing to an event with arguments must specify
a list of expressions in its arguments attribute. Those expressions are used to
compute the actual values for the arguments when the event is processed. In the
example, all scheduling relations pointing to IncreaseA and IncreaseB specify
“{1}” in their arguments attributes, meaning that k should take value 1 when
those events are processed. Values of the arguments declared by an event can
be accessed in the event’s actions and the guards and delays of the scheduling
relations emanating from that event.

2.3 Canceling Relations

A canceling relation is represented as a dashed edge between events. It can be
guarded by a Boolean expression. Its delay must be 0 and its arguments must
be an empty list “{},” which are both hidden.

ptera/ArgAndCancel.htm

e A0 eB:0

5:1.0
arguments: {1}

5:1.0
arguments: {1}

IncreaseA IncreaseB
(k: int) (k: int)
{A=A+k} {B=B+Kk}

~

\~_—’

guard: A >=10

guard: A< 10 guard: B <10
arguments: {1} arguments: {1}

Figure 4: A model with simultaneous events.

When an event with an outgoing canceling relation is processed, if the guard
is true and the event pointed to has been scheduled in the event queue, then that
scheduled event would be removed from the event queue immediately without
being processed. This yields the effect of canceling a previously scheduled event.
If the event pointed to is scheduled multiple times, with multiple instances of
it in the event queue (each of which belongs to the same event but may be
associated with a different list of arguments), then the canceling relation causes
only the first one in the event queue to be removed. If the event pointed to is
not scheduled, the canceling relation has no effect.

Figure 3 provides an example of canceling relation. Processing the last
IncreaseA event (at time 1.0) causes IncreaseB (scheduled to occur at time 2.0
by the Init event) to be cancelled. As a result, variable B is never increased.

Canceling relations do not increase expressiveness. In fact, a model with
canceling relations can always be converted into one without canceling relations,
as is shown in [8]. Nonetheless, they can be convenient, making more compact
and understandable models possible.

2.4 Simultaneous Events

Simultaneous events are events in a model that potentially have instances co-
existing in the event queue and that are scheduled to occur at the same model
time.

For example, consider setting both §’s in Figure 3 to 1.0, which yields the
model in Figure 4. That makes IncreaseA and IncreaseB simultaneous events.
Notice that instances of simultaneous events may not always occur at the same
time. For example, if the d’s were set to a + b and a * b respectively, where
a and b’s values are not determined, then only some instances of IncreaseA
and IncreaseB would occur at the same time. Moreover, even though multiple
instances of IncreaseA occur at the same time, they do not coexist in the event
queue, so IncreaseA is not simultaneous with itself. In general, it is a model

ptera/Simultaneous.htm

checking [9] problem to detect simultaneous events.

Table 1 contains four possible execution traces for the cases where IncreaseA
always occurs before IncreaseB, where IncreaseB always occurs before IncreaseA,
and where IncreaseA and IncreaseB are alternating in two different ways. There
are many other possible execution traces as well. The state of the event queue
is not shown in this representation of execution traces. The “Time” row shows
the model time at which events are processed. The “Event” row shows the
names of the events that are processed. Below the double lines are the states of
variables A and B after events in the same columns are processed. The columns
are arranged from left to right in the order of event processing.

The traces end with different final values of A and B. The last instance of
IncreaseA, which increases A to 10, always cancels the next IncreaseB in the
event queue, if any. There are 10 instances of IncreaseB in total, and the one
that is cancelled can be any one of them, if a well-defined order is missing.

We provide a solution below to avoid nondeterministic execution results as
demonstrated above.

2.4.1 LIFO and FIFO Policies

A LIFO (last in, first out) property or a FIFO (first in, first out) property can
be associated with a model. If neither of them is explicitly specified, the model
has the LIFO property by default.

Either the LIFO policy or the FIFO policy is used when multiple events
are scheduled to occur at the same time by different instances of events. With
LIFO, the event scheduled by a later instance of an event is processed earlier.
The opposite occurs with FIFO.

As an example, consider using the LIFO policy to execute the model in
Figure 4. Execution trace 3 and 4 in Table 1 would not be possible. Following
the Init event, either IncreaseA or IncreaseB is processed first, depending on
other mechanisms to untie simultaneous events to be discussed later.

e Suppose IncreaseA is processed first. According to the LIFO policy, the
second instance of IncreaseA scheduled by the first one should be processed
before IncreaseB, which is scheduled by Init. The second instance again
schedules the next one. In this way, processing of instances of IncreaseA
goes on until A’s value reaches 10, when IncreaseB is cancelled. That
leads to execution trace 1.

e If IncreaseB is processed first, all 10 instances of IncreaseB are processed
before IncreaseA. That yields execution trace 2.

With FIFO, however, instances of IncreaseA and IncreaseB interleave, re-
sulting in execution traces 3 and 4 in the table.

In practice, LIFO is more commonly used because it atomically executes
a chain of events, where one schedules the next with no delay. This achieves
atomicity in the sense that no event that is not in the chain interferes with the
processing of those events in the chain. This is convenient for specifying work-
flows where some tasks need to be finished sequentially without intervention.

Time | 0.0 1.0 1.0 ... 1.0
Event | Init IncreaseA IncreaseA IncreaseA
A 0 1 2 ... 10
B 0 0 0 ... 0
1) IncreaseA is always scheduled before IncreaseB
Time | 0.0 1.0 1.0 ... 10 1.0
Event | Init IncreaseB IncreaseB IncreaseB IncreaseA
A 0 0 0 ... 0 1
B 0 1 2 ... 10 10
Time | 1.0 ... 1.0
Event | IncreaseA IncreaseA
A 2 ... 10
B 10 ... 10
2) IncreaseB is always scheduled before IncreaseA
Time | 0.0 1.0 1.0 1.0 1.0
Event | Init IncreaseA IncreaseB IncreaseA IncreaseB
A 0 1 1 2 2
B 0 0 1 1 2
Time | 1.0 1.0 1.0
Event | IncreaseA IncreaseB IncreaseA
A 9 9 10
B 8 9 9

3) IncreaseA and IncreaseB are alternating, starting with IncreaseA

Time | 0.0 1.0 1.0 1.0 1.0

Event | Init IncreaseB IncreaseA IncreaseB IncreaseA
A 0 0 1 1 2

B 0 1 1 2 2

Time | 1.0 1.0 1.0 1.0

Event | IncreaseB IncreaseA IncreaseB IncreaseA

A 8 9 9 10

B 9 9 10 10

4) IncreaseA and IncreaseB are alternating, starting with IncreaseB

Table 1: Four possible execution traces for the model in Figure 4.

Figure 5: A scenario where event EQ schedules E1 and E2 after the same delay.

2.4.2 Priorities

For events that are scheduled by the same event with the same delay ¢, such
as E1 and E2 in Figure 5, priority numbers can be assigned to the scheduling
relations rl and r2 to determine the processing order. If rl1 has a higher priority
(i.e., a smaller priority number) than r2, then E1 is processed before E2, and
vice versa. The default priority number for any scheduling relation is 0.

In Figure 4, if the priority of the scheduling relation from Init to IncreaseA
is -1, and the priority of that from Init to IncreaseB is 0, then the first instance
of IncreaseA is processed before IncreaseB. Execution traces 2 and 4 in Table 1
would not be possible. On the contrary, if the priority of the scheduling relation
from Init to IncreaseA is 1, then the first instance of IncreaseB is processed
earlier, making execution traces 1 and 3 impossible.

2.4.3 Identifiers

Within a flat model, the events’ identifiers (IDs) are unique. A scheduling
relation also has a unique ID that is usually hidden in the visual representation.

In Figure 5, if r1 and r2 have the same delay § and the same priority, then
the order of E1 and E2 is determined as follows:

Assume total orders <. and <, exist for comparing events and
relations based on their IDs, respectively. Let e; =, ey be equiv-
alent to (e1 <. ea) A (e2 <. e1) and e; <. ez be equivalent
to (e1 <. ea) A —(ex <.e1). e1 occurs before es if and only if
(e1 <ce2) V (e1=cea A 11 <, 72).

Moreover, the total order <. is also used to sort the initial events in the
model (which are scheduled implicitly at the beginning of an execution but not
by scheduling relations).

2.4.4 Designs with Atomicity

An interesting research topic is to ensure atomicity for a sequence of events
with the presence of other simultaneous events. Without requiring designers
to explicitly control critical sections, as is the case for imperative programming
languages, here we present two design patterns in Figure 6 that designers can
reuse to obtain atomicity.

Start

<
-

Task1

<
<

Ta

2]
=
@

T

<

a) Sequentially perform all tasks

Start

Y
(Task1) (Task2) (Task3)

guard: G
guard: ‘Quard: G

b) Sequentially perform tasks until G is satisfied

Figure 6: Two design patterns for controlling tasks.

10

Final events shown as filled vertices with double-line borders are used in the
design patterns. They are special events that have the side effect of removing
all events in the queue. They are used to force termination of the execution
even though there may be events remaining in the event queue.

The design pattern in Figure 6a is used to sequentially and atomically per-
form a number of tasks, assuming the LIFO policy is chosen. Even if other
events exist in the model (which are not shown in the figure), those events can-
not interleave with the tasks. As a result, intermediate state between tasks is
not infected by other events.

The design pattern in Figure 6b is used to perform tasks until the guard G is
satisfied. This again assumes LIFO. After the Start event is processed, all tasks
are scheduled. In this case the first one to be processed is Taskl, because Task1
<e Task2 <, Task3. After Taskl, if G is true, End is processed next, which
terminates the execution. If G is not true, then Task2 would be processed. The
processing of tasks continues until either G becomes true at some point, or all
tasks are processed but G remains false.

2.5 Model Execution Algorithm

We operationally define the semantics of a flat model with an execution algo-
rithm. In the algorithm, symbol @ refers to the event queue. The algorithm
terminates when @ becomes empty.

1. Initialize @ to be empty
2. For each initial event e in the <, order

(a) Create an instance i,
(b) Set the time stamp of i, to be 0
(¢) Append i, to Q

3. While @ is not empty

Remove the first i, from @, which is an instance of some event e
Execute the actions of e

Terminate if e is a final event

For each canceling relation ¢ from e

From @, remove the first instance of the event that ¢ points to,
if any

(e) Let R be the list of scheduling relations from e

(f) Sort R by delays, priorities, target event IDs, and IDs of the schedul-
ing relations in the order of significance

(g) Create an empty queue @’

(h) For each scheduling relation r in R whose guard is true

11

5: SimulationTime

@ SimulationTime: 1000.0
® Servers: 3

5:3.0 + 5.0 * random()

guard: Servers> 0 ® Queue: 0
Enter
{Queue = Queue + 1}

8:3.0 + 5.0"random() guard: Queue > 0
Leave
{Servers= Servers+ 1}

Figure 7: A model that simulates a car wash system.

Start
{ Servers = Servers- 1;
Queue = Queue -1}

6: 5.0 + 20.0*random()

i. Evaluate parameters for the event e’ that r points to
ii. Create an instance ¢, of €’ and associate it with the parameters
iii. Set the time stamp of 7., to be greater than the current model
time by r’s delay
iv. Append i to Q’

(i) Create Q" by merging Q' with @) and preserving the order of events
originally in ' and Q. For any i’ € Q" and i € Q, ¢’ appears before
i in Q" if and only if the LIFO policy is used and the time stamp of
i’ is less than or equal to that of 7, or the FIFO policy is used and
the time stamp of ¢’ is strictly less than that of s.

(j) Let Q be Q"

2.6 Metaphorical Example: Car Wash Simulation

In this section, we describe a simple example that is a metaphor for many
systems of interest. It is more familiar than many practical applications, which
may be rooted in a highly technical application domain, and it is rich enough to
admit elaborations that illustrate the expressiveness of Ptera. We begin with a
simple multiple-server, single queue system, described as a car wash.

In a car wash system, a number of car wash machines share a single queue.
When a car arrives, it is placed at the end of the queue to wait for service by
any of the machines. The machines serve cars in the queue one at a time in
a first-come-first-serve manner. The car arrival intervals and service times are
produced with two stochastic processes.

The model to analyze the number of available servers and the number of
waiting cars over time is provided in Figure 7. The Servers variable is initialized

12

ptera/CarWash.htm

to 3, which is the total number of servers. The Queue variable starts with 0,
since no car is waiting in the queue at the beginning. Run is an initial event. It
schedules the Terminate final event to occur after the amount of time defined
by a third variable SimulationTime.

The Run event also schedules the first instance of the Enter event, causing
the first car arrival to occur after delay “3.0 + 5.0 * random(),” where random()
is a function that returns a random number in [0, 1) with a uniform distribution.
When Enter occurs, its action increases the queue size in the Queue variable by
1. The Enter event schedules itself to occur again. It also schedules the Start
event if there is any available server. The LIFO policy guarantees both Enter
and Start to be processed atomically, so it is not possible for the value of the
Servers variable to be changed by any other event in the queue after that value
is tested by the guard of the scheduling relation from Enter to Start.

The Start event simulates car washing by decreasing the number of available
servers and the number of cars in the queue. The service time is “5.0 + 20.0 *
random().” After that amount of time, the Leave event occurs, which represents
the finish of service for that car. Whenever a car leaves, the number of available
servers must be greater than 0, so the Leave event immediately schedules Start
if there is at least one car in the queue. Again, due to atomicity provided by the
LIFO policy, testing for the queue size and changing it in the following Start
event would not be interfered with by any other event in the event queue.

Without the Terminate event prescheduled at the beginning, an execution of
the model would not terminate because the event queue would never be empty.

3 Hierarchical Models

Hierarchical and component-based design can mitigate complexity and improve
reusability. Examples of existing hierarchical modeling languages include Stat-
echarts [10], DEVS (Discrete Event System Specification) [11] and hierarchical
Petri nets [12].

Hierarchical heterogeneous composition is studied in research projects such
as Ptolemy II [13], ForSyDe [14], SPEX [15] and ModHel’X [16]. In Ptolemy
IT, models of computation that can be composed in the model hierarchy include
DE (discrete events) [6], CT (continuous-time models) [17], FSM (finite state
machine), SDF (synchronous dataflow) [5], DDF (dynamic dataflow) [18], HDF
(heterochronous dataflow) [19], SR (synchronous reactive) [20], PN (process
networks) [21, 22, 23] and CSP (communicating sequential processes) [24]. They
form a rich set of formal languages that can be mixed to achieve high flexibility
and reusability [25].

An abstract semantics has been defined in Ptolemy II for specifying the
execution behavior of hierarchical heterogeneous models [26]. The semantics
enables hierarchical composition of distinct models of computation. It consists
of 1) an execution policy with designated extension points, and 2) a protocol
containing high-level specifications of the expected behavior at those extension
points.

13

After an overview of the abstract semantics, we provide algorithms for use
at the extension points, which, in combination with the execution algorithm,
define the operational semantics of hierarchical Ptera models.

3.1 An Abstract Semantics for Model Execution

Under the actor abstract semantics, a model component M is executed according
to the following policy. M may be an atomic component within a model, or
may itself be a composition of other components (in which case, it is called a
composite actor). The policy is extensible in that the methods invoked may
perform arbitrary (finite) computation. Some of the methods have Boolean
return values.

o FEzxecute M :

Preinitialize M

Initialize M

while true

if Prefire M then
Fire M one or more times
if not Postfire M then
break
Finalize M

For model M to be executed, Preinitialize, Initialize, Prefire, Fire, Postfire
and Finalize in the algorithm must be defined. Given M as the parameter,
those methods delegate to the corresponding methods defined for M’s director.
If M is hierarchical, which means M is a composite actor containing actors
inside, then its director also invokes those methods for the contained actors.
The way the director invokes the methods for the contained actors depends on
the model of computation that the director implements. In general, for each
contained actor, invocation of the methods should follow the sequence in the
execution algorithm, though the sequences for different contained actors may
be interleaved.

Expected behavior of the methods of component M is specified as follows.

e Preinitialize. Set up the structure of M for execution. This method
performs any and all actions within the component that may affect static
analysis, such as type inference.

e [Initialize. Initialize M for execution. If M is contained in another model
and its model of computation is timed, it may issue an initial firing request
to explicitly request its container to prefire, fire and postfire it at the
current model time or at a model time in the future.

e Prefire. Return a Boolean value that specifies whether a firing of M can
be performed given the current conditions of the inputs.

14

e Fire. Fire M. The fire method should react to inputs and (possibly)
produce outputs.

e Postfire. Update the state of M as a side effect of the last firing, and
return a Boolean value that tells whether future firings are permitted. A
timed model may now a issue firing request to its container, if any, or it
may advance model time if itself is at the top level of the model hierarchy.

e Finalize. Terminate the execution and release the resources allocated for
the given model. Once finalized, the model should not be prefired, fired
or postfired, unless it is initialized again.

An additional fireAt method is defined as a callback that can be invoked
in the Initialize and Postfire methods to request firing from the container. It
takes as the first parameter the model that issues the request and as the second
parameter a model time when firing of that model should occur. That model
time should be equal to or greater than the current model time. For example,
when Postfire is invoked with model M contained in M’, fireAt may be issued
with parameters M and ¢t. The director of M’ receives that request and schedules
to fire M when the model time reaches ¢.

3.2 Ptera Semantics in the Actor Abstract Semantics

Compared to the execution algorithm for flat Ptera models in 2.5, an alternative
way to define the semantics is by defining all the methods in the actor abstract
semantics. This alternative way yields an equivalent semantics for flat models,
but it additionally supports hierarchical models.

In the following discussion, M denotes a Ptera model. M’ is the model
that contains M in the model hierarchy, if it exists. m represents a submodel
contained in M, if any. Submodels are contained inside Ptera events.

The event queue of M is denoted by @. It is a priority queue that stores
scheduled events and fireAt requests from the submodels. The events are sorted
in the order discussed previously. The fireAt requests are sorted by their time
stamps. If a fireAt request and an event have the same time stamp, then the
fireAt request is sorted before the event. If two fireAt requests have the same
time stamp, they are sorted with the LIFO or FIFO policy, depending on when
those fireAt requests were received.

An additional initializing attribute is defined for each scheduling relation. It
takes a Boolean value that determines whether the submodel of the scheduled
event, if there is any, should be initialized every time that event is processed. If
the attribute is false, the submodel would be initialized only if it has not been
initialized or its postfire has returned false last time (meaning that its previous
execution has finished).

An additional variable S denotes a set of references to the submodels of M
that have been initialized.

o Preinitialize M :
Initialize @ and S to be empty

15

For each event e in M in the <. order

If e is associated with a submodel m
Preinitialize m

o Initialize M :
For each initial event e in M in the <, order

Create an instance i, and append it to @
Set the time stamp of i, to be the current model time

If container M’ exists and () is not empty

Issue fireAt to M’ with the current model time

o Prefire M returns Boolean:
If @ is not empty

Peek the first item ¢ in Q
Let t be 7’s time stamp
If t < current time
Report error and return false
else if ¢ > current time
Return false

Return true

o Fire M:

If Q is not empty

Peek the first item 7 in @
Let t be i’s time stamp
If t < current time
Report error and return
else if ¢ > current time
Return
Remove i from @ (step 3a in 2.5)
If ¢ is an instance of event e
Execute the actions of e (step 3b in 2.5)
If e is a final event
Clear @ (step 3c in 2.5)
else if e has submodel m
If the scheduling relation that scheduled 7 has

initializing attribute set to true, or m is not in S

Initialize m
Add m to S

If m need not be initialized or no fireAt request was

received when it was initialized
RunOnce m // defined next
else // e does not have submodel

Evaluate scheduling relations and canceling relations

from e (steps 3d through 3j in 2.5)
else // i is a fireAt request

16

Let m be the submodel that issued
RunOnce m

o RunOnce m:
If Prefire m

Fire m

If not Postfire m
Finalize m
Remove m from S
Let e be the event that m is associated with
Evaluate scheduling relations and canceling relations from
e (steps 3d through 3j in 2.5)

o Postfire M returns Boolean:
If Q is not empty
Peek the first item 7 in @
Let t be ¢’s time stamp
If M has container M’
Issue fireAt to M’ with time stamp ¢
else
Advance model time to ¢
Return true
Return false

o Finalize M :
For each event e in M in the <, order
If e is associated with a submodel m and m is in S
Finalize m

Clear @ and S

As part of the protocol established in the actor abstract semantics, in a hi-
erarchical model, each composite actor with a discrete-event director maintains
its event queue locally. Model M reports only the next firing time ¢ to its con-
tainer M’ with a fireAt request in postfire. If ¢ is greater than or equal to the
current model time, M’ ensures to fire M no later than . M’ does not need to
know the events that are scheduled in the event queue of M. This effectively
encapsulates the internal behavior of M. Another benefit is that by adjusting
the time advance rate of M (a factor to be multiplied with the time stamps
of events occurring in M, which could be different from 1), M may conceptu-
ally run at a different speed. This is particularly interesting for simulation and
performance analysis.

3.3 Semantic Equivalence for Flat Models

Operationally, it is straightforward to prove that the above implementation in
the abstract semantics defines an equivalent semantics for flat models compared
to the execution algorithm in 2.5, which does not use the abstract semantics.

17

5: SimulationTime @ SimulationTime: 1000.0

(i : int, initServers : int) @ Servers: {0, 0}

{Servers(i) = initServers; @ Queue: {0, 0}
Queue(i)=0}

guard: Servers(i) > 0
arguments: {i}

5: 3.0 + 5.0*random()
arguments: {i}

Start
(i :int)
{ Servers(i) = Servers(i) - 1;
Queue(i) = Queue(i)- 1}

Enter
(i :int)
{Queue(i) = Queue(i)+ 1}

5: 5.0 + 20.0*random()
guard: Queue(i)> 0 arguments: {i}
5:3.0 + 5.0*random() arguments: {i}

arguments: {i}

Leave
(i :int)
{ Servers(i) = Servers(i) + 1 }

Figure 8: A hierarchical model that simulates a car wash system with two
settings.

When M is flat, its container M’ does not exist and no submodel is associated
with any event. As specified by the actor abstract semantics, an execution starts
by preinitializing and initializing M. The set S is always empty. The event
queue () begins with only the initial events sorted in their previously defined
total order.

After initialization, M is executed in a loop. In each iteration, it is first
prefired. Prefire returns false only when the nearest event in @ has a time
stamp greater than the current model time, which should not happen for a flat
model, because either initialization or the last postfire should have set the model
time to that time stamp already. In each firing, if there are imminent events in
Q, the first one is processed following the steps 3a through 3j in 2.5. When @
is empty, M is still fired but nothing is done in the firing. Its postfire returns
false to terminate the execution.

Because of the semantic equivalence for flat models, the execution algorithm
specified in the actor abstract semantics can be considered as an extension to
that in 2.5, with the difference that the former also supports hierarchical models.

18

ptera/HierarchicalCarWash.htm

3.4 Hierarchical Car Wash Model

As a demonstration of hierarchical models, Figure 8 is a modification from
Figure 7. Its top level simulates an execution environment, which has a Run
event as the only initial event, a Terminate event as a final event, and a Simulate
event associated with a submodel. The submodel simulates the car wash system
with the given number of servers.

The two scheduling relations pointing to the Simulate event have hollow
arrow heads, which reveal the fact that their initializing attributes are set to
true. For that reason, they are called initializing scheduling relations. They
make the submodel initialized each time the Simulate event is processed. In
this example, the Simulate event is processed twice, causing two instances of
the Init event to be scheduled in the submodel’s local event queue. They are
the start of two concurrent simulations, one with 3 servers and the other with
1 server. The priorities of the initializing scheduling relations are not explicitly
specified. Because the two simulations are independent, the order in which they
start has no observable effect. In fact, the two simulations may even occur
concurrently.

Parameter ¢ for the Simulate event distinguishes the two simulations. Com-
pared to the model in Figure 7, the Servers variable in the submodel has been
extended into an array with two elements. Servers(0) refers to the number of
servers in simulation ¢ = 0, while Servers(1) is used in simulation ¢ = 1. The
Queue variable is enhanced in the same way. Each event in the submodel also
takes a parameter ¢ and supplies the value of 7 that it receives to the next events
that it schedules. This ensures that the events and variables in one simulation
are not affected by those in the other simulation, even though they share the
same model structure.

Table 2 shows a possible execution trace. Numbers in superscript represent
the ¢ values for the events.

Let M and m be the top-level model and the submodel, respectively. The
execution starts by running the execution algorithm with M. At the beginning,
M is preinitialized, causing m to be preinitialized as well. After that, M is
initialized, so its initial event Run is placed in its event queue denoted by Qa;.

In the first iteration of the loop in the execution algorithm, M is prefired
and the prefire returns true because the Run event is scheduled at the current
model time, which is 0. M is then fired. Its Run event is processed and two
instances of the Simulate event and a Terminate event are scheduled in Q;.
Postfire of M returns true because there are events remaining in Q ;.

In the second iteration, M is prefired, fired and postfired again. In the firing,
assume the instance of Simulate event to be processed is Simulate’. (As men-
tioned above, an opposite assumption leads to the same result.) m is initialized
for the first time and is added to set S. In its initialization, m schedules the Init
event in its event queue @),,. It also issues a fireAt request to M, requesting
M to fire it at the current model time. After initializing m, the firing of M
finishes. M is then postfired with true return result.

In the third iteration, the submodel m is prefired, fired and postfired. (Simulate!

19

Time 0.0 0.0 0.0 0.0 0.0 3.654 3.654
Event Start! Enter® Start® Enter! Run Simulate? Init?
Servers(0) | 2 2 1 1 0 0 3
Queue(0) | 0 1 0 0 0 0 0
Servers(1l) | 0 0 0 0 0 0 0
Queue(l) | 0 0 0 1 0 0 0

Time 4.028 4.028 8.158 8.158 8.406 11.007 12.384
Event Simulate! Init! Enter® Start® FEnter! Leave® Leave!
Servers(0) | 3 3 3 2 2 2 2
Queue(0) | 0 0 1 0 0 0 0
Servers(1) | 0 1 1 1 1 0 1
Queue(l) | 0 0 0 0 1 1 1
Time 12.384 12.997 14.613 14.613 ... 1000

Event Start! Enter' Enter® Start® ... Terminate

Servers(0) | 2 2 2 1 e 2

Queue(0) | 0 0 1 0 ... 0

Servers(1) | 0 0 0 0 ... 0

Queue(l) | 0 1 1 1 105

Table 2: An example execution trace for the model in Figure 8.

remains in @, because fireAt requests are always ordered before event in-
stances with the same time stamp.) In m’s firing, the Init event is processed,
which schedules an Enter event in Q,, after a random delay. In m’s postfire,
another fireAt request is issued to M.

In the fourth iteration, Simulate' is processed. This causes m to be again
initialized (due to the initializing scheduling relation). Another instance of the
Init event is scheduled in @),,. That instance is processed in the fifth iteration.

The execution continues until the model time is eventually advanced to 1000
and the Terminate event originally scheduled in @, is processed.

As a remark, one can conceptually execute multiple instances of a submodel
by initializing it multiple times. However, the event queue and variables are not
copied. Therefore, the variables need to be enhanced into arrays and an extra
index parameter (¢ in this case) needs to be provided to every event.

Actor-oriented subclassing [27, 28] provides an alternative approach to en-
hancing a submodel into multiple executable instances. A class can be defined
for the design of the submodel, with which instances can be created for execu-
tion.

Yet another approach is higher-order model composition [29], which allows
to specify the model with a parametrizable higher-order model description. For
example, using the Ptalon language, specification of a complex and large-scale
model can be greatly simplified with a compact description [30]. Growth in

20

model size does not require larger descriptions. Another example is the higher-
order model composition language offered by the VIATRA2 model transforma-
tion tool [31].

4 Composition with Heterogeneous Models of
Computation

In a hierarchical heterogeneous composition, Ptera models can be composed
with actor-oriented discrete-event (DE) models and finite state machines (FSMs),
as well as models using other models of computation implementable in the actor
abstract semantics.

We demonstrate the concept with two examples. One is to embed Ptera in
DE and the other is to embed Ptera in DE and FSM in Ptera. A discussion
that follows lists other types of composition that are currently known to be
compatible. The general idea behind is extremely powerful because it allows
designers to choose a convenient and expressive model of computation to model
each part of the their systems, and to obtain a well-defined semantics for the
overall composition.

4.1 Composition with DE

Compared to Ptera models, DE models are a different kind of discrete-event
model. Their visual representation uses the actor-oriented modeling language.
That is, actors are represented with boxes, ports of actors are triangles, and the
lines between ports are communication channels.

Actors perform computation on the data received at their input ports, and
produce data via their output ports. Those data are wrapped in events that
also carry time stamps representing the model time at which they are produced.
The events in DE, which we call DE events in the following discussion, are not
visible in the model design, and are different from events in Ptera shown as
vertices.

There are two kinds of actors. An atomic actor is implemented in an impera-
tive programming language, such as Java and C. A composite actor encapsulates
interconnected actors and acts as a single actor. For a composite actor to be
executable, a director, which is a special attribute, must be associated with it.
The director implements a model of computation. In particular, a DE model is
a composite actor with a DE director.

4.1.1 Overview of the DE Director

The DE director implements DE semantics [6] for the composite actor that it
is associated with. In an execution, the DE director maintains an event queue,
which temporarily stores DE events received at the input ports of actors in that
composite actor, as well as the fireAt requests issued by those actors. When
the model time becomes equal to the time stamp of a DE event (or a fireAt

21

request), the DE director fires the corresponding actor and provides it with the
DE event.

The following is a brief description of the methods defined for the DE director
to be used in the actor abstract semantics.

e Preinitialize. Clear the event queue used for executing the composite
actor. Preinitialize all the actors in the composite actor.

e Initialize. Analyze data dependency between actors. Initialize all the
actors in the composite actor. Some actors may issue fireAt requests,
which are stored in this director’s event queue.

e Prefire. Check whether there is any DE event or any fireAt request in the
event queue to be processed at the current model time, or there is any DE
event available at an input port of the composite actor, or the composite
actor is at the top level. If any of those conditions is true, return true;
otherwise, return false.

e [ire. Move the events at the input ports of the composite actor into the
event queue for the actors in the composite actor to process. Remove the
DE events and fireAt requests scheduled at the current model time from
the event queue, one at a time, in an order preserving data dependency.
For each DE event or fireAt request, prefire the responsible actor and fire
it if prefire returns true. The fired actor may generate DE events for the
actors connected to its output ports. Those DE events are stored in this
director’s event queue until the receiving actors are fired at the model
time equal to the time stamps of those DE events. After that, postfire
the actor to determine whether it needs to be fired again. The actor may
issue a fireAt request to be added to this director’s event queue.

e Postfire. Check whether there are DE events or fireAt requests remaining
in the event queue. If so, either advance model time to the smallest time
stamp in case the associated composite actor is at the top level of model
hierarchy, or otherwise issue a fireAt request to the containing model.

e Finalize. Clear the event queue and finalize all actors in the composite
actor.

4.1.2 Example

Figure 9 shows a model that uses DE at its top level and contains Ptera sub-
models. In Figure 9a, boxes are actors except that the filled box with caption
“DE Director” represents a DE director, which is essentially an attribute that
defines the DE semantics for the diagram. CarGenerator and Servers are two
composite actors associated with Ptera submodels. Plotter is an atomic actor
defined in Java.

Figure 9b shows the internal design of CarGenerator. The Init event sched-
ules the first Arrive event after a random delay. Each Arrive event schedules

22

DE Director

CarGenerator Servers
=g= ==

a) Top level

5: 3.0 + 5.0 * random()

output

o

Arrive
{output=1}

5:3.0 + 5.0 * random()

b) Internal design of CarGenerator

&: Infinity

< Infini
6: Infinity triggers: carlnput

triggers: carlnput

Enter

{Queue = Queue + 1; @ Servers: 0
serversOutput = Servers; .
queueOutput = Queue } ® Queue: 0
carlnput guard: Servers> 0
* serversOutput

Start *

{Servers = Servers- 1;
Queue = Queue - 1; queueOutput
serversOutput = Servers; *
queueOutput = Queue }

d: 5.0 +20.0*random()
guard: Queue >0

Leave
{Servers = Servers + 1;
serversOutput = Servers;
queueOutput = Queue }

¢) Internal design of Servers

Figure 9: A car wash model using DE and Ptera in a hierarchical composition.

23

ptera/CarsAndServers.htm
ptera/CarsAndServers.htm
ptera/CarsAndServers.htm

90 b
80 [)
701)
60 [)
50 [)
40[)
30[)
20 b
0)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

a) InterarrivalTime = 3.0 4+ 5.0 * random()

90 [)
80 b
701)
60 [b
50 [)
40 b
30[)
20[)
0)

00 01 02 03 04 05 06 07 08 09 10
x10°
b) InterarrivalTime = 1.0 + 5.0 * random()

Figure 10: Plotter output for two configurations of Figure 9.

the next one. Whenever it is processed, the Arrive event generates a car arrival
signal and sends it via the output port using assignment “output = 1” with the
left hand side being the port name and the right hand side being an expression
that computes the output value. In this case, the value 1 is unimportant and
only the presence of a value at the output port is interesting.

Figure 9c shows the internal design of Servers. It is similar to the previous
car wash models, except that there is an extra carlnput port to receive DE
events representing car arrival signals from the external and the Enter event
is scheduled to handle inputs via that port. No assumption is made in the
Servers component about the source of the car arrival signals. At the top level,
the connection from CarGenerator’s output port to Servers’ input port makes
explicit the producer-consumer relationship. This separation of concerns leads
to a more modular and reusable design.

Plotter at the top level plots the outputs from Servers in a separate window.
An example plot obtained by executing the model to time 1000 is provided in

24

ptera/CarsAndServers.htm
ptera/CarsAndServers.htm

Figure 10a, where the upper (blue) curve represents the number of waiting cars
over time, and the lower (red) curve represents the number of available servers.
If the car interarrival time in Figure 9b is changed from “3.0 + 5.0 * random()”
to “1.0 4+ 5.0 * random(),” one may observe a different plot as in Figure 10b.

4.1.3 Processing of DE Events

In initialization, the DE director computes the causality dependency between
the interconnected actors. This information can be used in the Fire method to
determine an unambiguous actor firing order [32]. Each actor is also initialized
in this phase. For a Ptera submodel (such as CarGenerator and Servers in
Figure 10), initializing it causes initial events to be scheduled in its event queue
at time 0 and a fireAt request to be issued to the DE director. The request is
stored in the DE director’s event queue.

DE events and fireAt requests in the event queue of a DE director need not
be totally ordered. The director only needs to ensures that if DE event e; is
causally dependent on e1, then e; must be processed before e;. For DE events
that do not have causality dependency between them, the order in which they
are processed does not affect the observable output, and can be arbitrary [33, 34].

Each time the DE director is fired, it retrieves imminent DE events and
fireAt requests from its event queue. For a DE event, the director fires the
receiving actor. The actor can read the DE event when it is fired. For a fireAt
request, the actor is fired with no available input.

In the example, when fired the first time at model time 0, the two submodels
process their Init events. In CarGenerator, an Arrive event is scheduled in its
event queue. A new fireAt request is issued to the DE director in postfire that
requests to fire again in the future when the model time reaches the time of
the Arrive event. In Servers, processing the Init event causes the Servers and
Queue variables to be reset to their initial values. The Enter event is scheduled
with the delay “Infinity” and is registered to receive inputs at carlnput port
(discussed next). Postfire of this submodel does not issue fireAt request but
simply returns true. This is because, even though the Servers component has
events remaining in its event queue, it cannot decide the time when it should
be fired again. The DE director at the top level should fire it when a DE event
is received at its input port.

In postfire, the DE director advances model time to the time of the fireAt re-
quest from CarGenerator. In the next firing, the DE director fires CarGenerator,
which processes the Arrive event and generates a DE event to the output port.
That DE event is tagged with a time stamp equal to the current model time,
and is stored temporarily in the DE director’s event queue. When CarGenerator
postfires, it schedules the Arrive again and issues another fireAt request. The
DE director also fires the Servers submodel since it has a DE event at its input
port. The latter processes the Enter event, which is triggered by the input as
specified by the triggers attribute of the scheduling relation that scheduled it.

Plotter passively waits for DE events from Servers. Every time it is fired, it
is provided with two DE events, one at each channel of the input port, because

25

Servers always generates DE events at both output ports at the same time. In
reaction, Plotter extracts the values from those DE events and plots them in a
separate window.

4.1.4 External Inputs and Outputs

A scheduling relation may be tagged with a triggers attribute that specifies port
names separated by commas. This can be used to schedule an event in a Ptera
submodel to react to external inputs. The attribute is used in conjunction with
the delay 0 to determine when the event is processed.

Let the triggers be “py,p2,---,pn.” The event is processed when the model
time is d-greater than the time at which the scheduling relation is evaluated
or one or more DE events are received at any of p1,ps,---,pn. To schedule an
event that indefinitely waits for input, “Infinity” may be used as the value of 4.

To test whether a port actually has an input, a special Boolean variable
whose name is the port name followed by string “_isPresent” can be accessed.
To refer to the input value available at a port, the port name may be used in
an expression.

For example, the Enter event in Figure 9c is scheduled to indefinitely wait
for DE events at the carInput port. When one is received, the Enter event is
processed ahead of its scheduled time and its action increases the queue size by
1. In that particular case, the value of the input is ignored.

To send DE events via output ports, assignments can be written in the
actions with port names on the left hand side and expressions that compute the
values on the right hand side. The time stamps of the outputs are always equal
to the model time at which the actions are executed.

4.2 Composition with FSMs

Ptera models can also be composed with untimed models such as FSMs (finite
state machines). When a Ptera model contains an FSM submodel associated
with an event, it can fire the FSM when that event is processed and when inputs
are received at its input ports.

The opposite composition, having Ptera submodels be refinements of states
in an FSM, is also interesting because by changing states, the submodels may
be disabled and enabled, and the execution can switch between modes. That
style of composition is addressed by the Ptolemy IT modal models [35], which
can interact well with discrete-event models [36].

4.2.1 Overview of the FSM Director

Here we only concern FSMs without the modal model extension embedded in
Ptera as submodels.
In the actor abstract semantics, the FSM director can be defined as follows.

e Preinitialize. Nothing needs to be done.

26

e Initialize. Set the current state to be the initial state.

e Prefire. Return true, because an FSM is always willing to be fired unless
its final state has been reached, in which case its Postfire should have
returned false and Prefire would not be invoked again.

e [ire. Evaluate the guards of all transitions from the current state. Among
those that are enabled (if any), pick one according to a predefined or user-
specified scheme. Execute the actions of the chosen transition that pro-
duce output data at the FSM’s output ports. Record the chosen transition
to be used in Postfire.

e Postfire. If a transition is chosen in Fire, execute the actions of that
transition that assign new values to variables. After that, set the current
state to be the destination state. Return true if the new state is not a
final state. Return false otherwise.

e Finalize. Nothing needs to be done.

Because an FSM is untimed, if it is contained in a discrete-event model, the
data that it outputs in Fire are automatically associated with the current model
time as their time stamps.

4.2.2 Example

To demonstrate composition of Ptera and FSM, consider the case where drivers
can perceive the number of cars waiting in the queue and may avoid entering the
queue if there have already been too many waiting cars. That leads to a lower
arrival rate (or equivalently, longer interarrival time in average). Conversely, if
there are only few or no waiting cars, the drivers would always enter the queue,
resulting in a higher arrival rate.

The model in Figure 9 is modified for this scenario and the revised model is
shown in Figure 11. Figure 12 shows the result of executing the new model. At
the top level, the queueOutput port of Servers (whose internal design is the same
as Figure 9c) is fed back to the queuelnput port of CarGenerator. The FSM
submodel in Figure 11c is associated with the Update event in CarGenerator.
It inherits the ports from its container, allowing the guards of its transitions to
test the inputs received at the queuelnput port. In general, actions in an FSM
submodel can also produce data via the output ports.

At the time when the Update event of CarGenerator is processed, the FSM
submodel is initialized to be in its initial state. When fired the first time, the
FSM moves into the Fast state and sets the minimum interarrival time to be
1.0. Since then, the interarrival time is generated with expression “1.0 + 5.0
* random().” Notice that the min variable is defined in CarGenerator, and a
scoping rule enables the contained FSM to read from and write to that variable.

Postfire of the FSM always returns true, because there is no final state. The
FSM would be fired again when either the Update event is processed again
(which does not happen in this example) or when input is received at any input

27

DE Director

CarGenerator Servers

QLN

a) Top level

&: min + 5.0 * random()

output
queuelnput *
e min: 3.0

6: min + 5.0 * random()

b) Internal design of CarGenerator

queuelnput

» guard: true

set: min =1.0

output

-

guard: queuelnput_isPresent
&& queuelnput > 10

guard: queuelnput_isPresent
set: min = 3.0

&& queuelnput < 5
set: min=1.0

¢) Internal design of Update

Figure 11: A car wash model using DE, Ptera and FSM in a hierarchical com-
position.

28

ptera/DEAndFSM.htm
ptera/DEAndFSM.htm
ptera/DEAndFSM.htm

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x10

Figure 12: Plotter output for the model in Figure 11.

port. When the Servers composite actor sends out the number of waiting cars
via its queueOutput port, the number is transferred to the queuelnput port
of CarGenerator by the top-level DE model and is made available to the FSM
submodel. The FSM submodel is fired at that time. It may or may not change
state depending on whether that received number exceeds the bounds.

In general, when a Ptera model receives input at a port, all the initialized
submodels are fired, regardless of the models of computation that those sub-
models use.

4.3 Hierarchical Heterogeneous Model Design

Models of computation implementable in the actor abstract semantics can be
composed with Ptera to create executable models, but some types of composi-
tion may not be as common as others.

We identify types of compositions involving Ptera models, and perform ex-
periments in Ptolemy II to back the theoretical results.

These are the currently studied models of computation that can be used to
create models containing Ptera submodels.

e DE. As is demonstrated in the examples in Figure 9 and Figure 11, DE
models can contain Ptera submodels and provide well-defined discrete-
event semantics. The Ptera submodels can communicate with actors in
the DE model using DE events via ports.

e Ptera. We have shown the composition of Ptera and itself in Figure 8. The
containing and the contained Ptera models have separate event queues,
and the event queue of the outer model only needs to store the nearest
fireAt request from the submodel. It fires the submodel when the model
time reaches the requested time, or an input is received at any input port,
or the event that the submodel is associated with is processed.

29

ptera/DEAndFSM.htm

5

TM (timed multitasking). This model of computation emulates the be-
havior of a real-time operating system running on a single-core CPU. An
actor is a task that can be triggered by timed events received at its in-
put ports. The actor may also issue fireAt requests which the director
considers as interrupts occurring at the time equal to their time stamps.

These are the models of computation that can be contained in Ptera.

DE. DE can be embedded in Ptera as well, though the examples do not
show this type of composition. A DE submodel reports to the Ptera model
that contains it with fireAt requests. It would also be fired when the event
it is associated with is processed and when inputs are received at the input
ports.

FSM. As an untimed model of computation, FSM cannot issue fireAt
requests, so its firing can only be triggered by processing the event that it
is associated with in the Ptera model or by receiving an input.

Ptera, as is discussed above.

Dataflow. SDF (synchronous dataflow) [5], DDF (dynamic dataflow) [18]
and HDF (heterochronous dataflow) are different flavors of dataflow and
are all untimed. Their semantics can be defined in the actor abstract
semantics. Similar to FSMs, dataflow submodels are fired when the con-
taining Ptera model processes the events they are associated with or when
inputs are received.

SR (synchronous reactive) [20]. An SR model is timed and the time ad-
vances in fixed step sizes called periods (which may be 0). In each period,
the data values on the communication channels are computed as a fix-
point. For an SR submodel contained in a Ptera model, at the end of each
period, it requests firing for the next period, and the Ptera model stores
the fireAt request in its event queue.

Example Applications

As a general-purpose model of computation, Ptera can be applied to a wide
range of applications. It is especially suitable for modeling timed sequential
processes. Hierarchical composition with other models of computation, such as
dataflow and DE, allows for concurrency when desired.

We present three practical applications, each highlighting a strength that
Ptera is equipped with.

5.1 Complex Control System

Complex system designs require selecting from hugely many possible realizations
of a specification. Code generation from models and compilation from higher-
level languages help, but these techniques are focused on selecting from relatively

30

few possible realizations. Most of the hard work has already been done in
the construction of the models and the software. The NAOMI project [37]
is a collaboration of LMATL (Lockheed Martin Advanced Technology Lab),
UC Berkeley, UIUC, and Vanderbilt University that addresses the problem of
designing such systems. It focuses on the problem of multimodeling, which is
the combination of several distinct models in the construction and analysis of
systems. NAOMI supports design of complex systems by enabling composition
of multiple models and providing techniques for ensuring consistency across
models, correctness of the composition, and synthesis of compositions via model
transformation. Central to this is effective characterization of the interfaces of
the components that make up the whole.

The NAOMI project has also leverages a metaphorical example application,
a traffic light system, which provides an arbitrarily extensible test case for the
multimodeling. Models can range from a single pedestrian crossing, useful for
illustration, to entire cities with superimposed and conflicting constraints. The
approach in NAOMI is to show how multimodeling helps make such systems
tractable.

In [38], two types of multimodeling are identified, namely, hierarchical multi-
modeling and multi-view modeling. The NAOMI project explores both types of
multimodeling. It incorporates a variety of modeling tools into the framework
of a multimodeling manager. For the metaphorical example, the Ptolemy II
modeling environment [13] is used to create a Traffic Light model that exhibits
the behavior of the car lights and pedestrian lights at a 4-way intersection.

The Traffic Light model contains separate components for the 4 car lights,
which turn red, green and yellow after every preconfigured time duration. Each
Car Light component is connected to a Pedestrian Light via a wireless channel.
The wireless signals are modeled with the Wireless director in Ptolemy II, a
variant of DE director that transfers data on implicit wireless channels instead
of explicit connections between ports.

Here we focus on the part of Car Light component shown in Fig. 13. It
demonstrates how Ptera can be used to model complex control systems. The
Init event is the only initial event to be fired at model time 0. Depending
on the initial state of the car light, it schedules Red, Green or Yellow to occur
immediately, which set the car light to the corresponding color. The PedRequest
port receives pedestrian requests. According to the specification, when the first
pedestrian arrives at the car light and if the car light is green at the moment,
the pedestrian presses a button to request crossing. Handling of the requests
is according to the design policy. When a request is handled, a data value is
sent to the PedReqeust port. The scheduling relation from Green to Yellow
is set to have delay “GreenDuration” (a constant defined at a higher level of
the model hierarchy) and its “triggers” attribute is set to “PedRequest.” This
means the light turns yellow either the GreenDuration expires, or a pedestrian
request needs to be handled.

A similar design is found between the Red and Green events. When the car
light is red, it may receive an external event at the OrthogonalRequest port,
signifying that a pedestrian request is handled by a car light in the orthogonal

31

5: RedDuration - YellowDuration
3: YellowDuration

triggers: OrthogonalRequest

RedToGreen
guard: Lightlnit ==
guard: Lightlnit ==

guard: Lightlnit ==
Yellow
{Light=Y}

5: YellowDuration

Green
{Light = G;
CrossScheduled = true }
1 AN &: GreenDuration
1 ~ triggers: PedRequest
1 RS
\ Se d: Infinity
“ RS < triggers: CarCount
\ \\\ &: Infinity
\ SN - triggers: CarCount
\ ~<o
\
\
\ guard: CarCount == 1 && !CrossScheduled
CarCount \\

guard: CarCount == 0 && CrossScheduled
\
\\ CarTrigger
N ScheduleCross CancelCross
\\ { CrossScheduled = true } { CrossScheduled = false }
~ T
PedRequest AN ’
> s
S ~
< :
S~~s Cross Light
{CarTrigger=1} *

OrthogonalRequest @ CrossScheduled: true

6: CrossTime

Figure 13: A Car Light component in the Traffic Light model

32

ptera/Intersection/Intersection.htm

direction. In that case, the orthogonal car light turns yellow immediately, and it
informs this car light. After the yellow duration, the orthogonal car light turns
red, and this car light should turn green. Here we assume RedDuration to be
greater than YellowDuration, as it is in all the cases we have encountered. The
scheduling relation from Red to an additional event RedToGreen takes place
when the amount of time “RedDuration - YellowDuration” expires, or a car
light in the orthogonal direction handles a pedestrian request. When either
happens, this car light turns green after YellowDuration.

A third input port, CarCount, receives the numbers of cars waiting for this
car light. It receives increasing consecutive numbers when the light is red ac-
cording to a Poisson arrival process, and decreasing consecutive numbers when
the light is green. We assume it takes constant time for each car to cross the
intersection, whereas all waiting pedestrians cross in negligible time. To reflect
this, when the car light turns green, the HandleCarCount event is scheduled to
listen to inputs at the CarCount port. The Cross event is also scheduled to oc-
cur immediately to allow the first waiting car to cross, if any. Cross repeatedly
schedules itself after every CrossTime period. If no car is waiting any more, the
next Cross event is cancelled. If a car arrives when the light is still green, a new
Cross event is scheduled if none has already been scheduled (which is detected
with the CrossScheduled variable being false).

The two output ports send out controlling signals. CarTrigger informs the
car counting component that a car can leave the waiting queue, if any. It has
no effect if the queue is already empty. The Light port outputs signals that
controls the car light hardware device.

Despite the complexity of the control logic as described in the specification,
the car light component remains in manageable size. An equivalent FSM would
have much more states than the events here. From time to time in an execution,
multiple events are scheduled in the event queue, and using FSM, it would be
required to explicitly model each possible state of the event queue as an explicit
state.

It would be possible to automatically and precisely model-check this Ptera
component. It has only finite states for its event queue, and by exploiting
all those states, the exact behavior can be checked. In future work, we will
further explore model checking techniques [39] for bounded and unbounded
Ptera models.

5.2 Sequential Workflow: Model Optimization

Sequential workflows can be specified with Ptera models. A practical application
has been developed by UC Berkeley and Bosch to transform and optimize large-
scale models of automotive engines. A simplified model of the application is
shown in Fig. 14. Tt is a Ptera model at the top level. (The rectangles in
the figure identify the surrounded objects to be derived from an actor-oriented
class [27]. They have no significance in the model’s semantics.) This model has
a Model parameter, which has a special “actor” icon to make it clear that it
contains a model as its value, rather than a traditional primitive value.

33

guard: updated guard: lupdated

{updated = false }

(TransformAdd) (Transform Minus) (Transform MUWP'Y) (TransformDivide)

guard: matched guard: matched guard: matched guard: matched

Test1 Test2 Test3 Test4
{updated = true } {updated = true } {updated = true } {updated = true }

Figure 14: A hierarchical workflow to optimize a model

A few special events are used in this case, which have actions implemented
in Java. InitModel is an initial event that resets the Model parameter so that
it contains an empty model. ReadModel reads the contents of a file on the
disk, parses it into a model, and stores that model in the Model parameter.
Analyze is an event associated with an SDF (synchronous dataflow) submodel
that analyzes the model in the Model parameter to detect constant signals. We
ignore the submodel in the figure because its internal design is proprietary and
irrelevant to our discussion.

Optimize is an event associated with another submodel to eliminate com-
putation that returns constants from the model if possible. It has 4 Transform
events started by the single Start initial event. Each Transform event represents
a model transformation specified with a graph transformation rule [40, 41]. For
example, TransformAdd transforms an Add actor within the model in the Model
parameter with at least one constant input into either a simpler Add actor, or a
constant actor if all its inputs are constant. Each Transform event has an inter-
nal “matched” parameter that tells whether the model was updated in the last
transformation. An “updated” variable in the submodel determines whether
the model was updated in the last execution of the submodel. At the end of the
top-level workflow, a WriteModel event is used to write the model into a file.

This example highlights a hierarchical model optimization workflow that
can easily grow to a much bigger size in practice. The complexity at each level
remains low, however, due to the restricted and cleanly defined behavior of the
submodels.

34

5.3 Timed System with Unbounded States: Car Wash

In the previous sections, we have discussed various versions of car wash simula-
tions. The model in Fig. 11 is derived from an imaginary but yet very realistic
application introduced in [42, 43]. We take that model as a concrete example
to show that designers can use Ptera to conveniently model timed systems with
unbounded states.

In car wash, because the number of servers is an unbounded input from the
external environment, the number of scheduled car leaving events at any time
in a simulation is unbounded as well. Using Ptera, this unboundedness can be
very easily modeled with the model’s event queue. An Enter event or a Leave
event may or may not schedule a Start event, which in turn always schedules
a Leave event. The designer need not worry about the number of Leave events
that are potentially in the event queue at any time. Furthermore, though it is
not shown here, the readers may imagine an enhancement to this component
such that each Start event takes a parameter that identifies the served car’s
plate number or make and year. The same parameter can be passed to the
Leave event that it schedules, which can be used for record or statistics at the
time when the car leaves. This ability of associating parameters to an event and
retrieving their values when the event is processed comes in handy in this sort
of applications.

Ptera provides an unambiguous notion of model time, even for hierarchical
models. Events are processed in their time stamp order. For events occurring
at the same model time, a deterministic order is guaranteed. This makes it easy
to model timed applications, such as the car wash system above.

6 Related Work

6.1 Modeling Views

The Unified Modeling Language (UML) encompasses a series of diagrams that
facilitate different modeling habits. Among those, class diagrams are widely
used to create designs in class-oriented views, where classes are the basic build-
ing blocks, and designers focus on the functionality provided by the classes as
well as the relationship between classes. In object diagrams and communication
diagrams, however, designers model dynamic objects that come into existence
in an execution. The important relations in those diagrams are messages and
method invocations between objects. Statecharts, which are an extended form of
finite state machines, promote state-oriented modeling, emphasizing run-time
states of the system. Sequence diagrams consider a parallel system to be a
set of sequential processes that interact with each other at specified execution
points. This is related to actor-oriented modeling studied in a number of re-
search projects [13, 44, 45], with the difference that in the former approach,
the model of computation for the interaction between processes is predefined,
whereas in the actor-oriented modeling approach, designers can freely choose
their preferred models of computation.

35

In this paper we discuss the event-oriented view of systems in the context
of Ptera. This view complements other views by allowing designers to focus on
events and their causality relationship. We also show how event-oriented models
can be composed with actor-oriented models in the practice of heterogeneous
multimodeling [38] with the Traffic Light application.

6.2 Hierarchical Composition

Ptera is an extension of event graphs in [1] with additional features, among
which is the support for hierarchical heterogeneous composition.

By defining an actor abstract semantics for model execution that invokes
methods to be defined in the implementation of each model of computation,
a rigorous execution semantics is obtained. This work surpasses the three ex-
isting approaches to hierarchically composing event graphs [2, 3, 4], because
heterogeneous models of computation can be composed with Ptera, including
but not limited to DE [6], FSM, SDF (synchronous dataflow) [5], DDF (dynamic
dataflow) [18] and SR (synchronous reactive) [20].

6.3 FSMs and UML Statecharts

In an FSM (finite state machine) model, all states that the system can move
in must be explicitly represented (unless extra variables are introduced, which
sometimes compromise the benefits of using FSMs). In Ptera, the state is im-
plicit because the event queue is not visible at design time. Model checking
is much easier in the former case due to the bounded reachable state space.
The latter provides Turing-complete expressiveness, because it has been proved
that 1) Petri nets with inhibitor arcs are Turing-complete [46] and 2) any such
Petri net can be modeled with an equivalent event graph [47]. The enhanced
expressiveness usually makes model checking a much harder problem. One way
to formally check Ptera models is by exploring all the possible states of its event
queue. This, however, is not an efficient solution in general. Future work would
be to apply recent research results on checking models with infinite states [48].

For a reactive FSM model, at any state all possible inputs need to be accepted
by a transition. This concept is exploited in work such as interface automata
in [49]. This requirement, however, dramatically complicates the design and
may lead to design errors for not being able to anticipate potential inputs.
The problem is eliminated in Ptera because multiple events can be scheduled
to handle different inputs. When designing outgoing scheduling relations from
an event, the designer only needs to concern about the causality relationship
between events when certain inputs occur, while the rest of possible inputs are
already taken care of by other events in the event queue. In our practice with
the model optimization application, we find this amendment greatly alleviates
the designer’s work.

UML Statecharts, originally introduced by Harel [10], are an extended form
of FSMs, which support hierarchical composition and concurrency (by means of
orthogonal states). This removes some limitations of FSMs when they are used

36

to design software in practice. However, Statecharts are limited by the finite
number of states and the lack of temporal semantics.

6.4 UML Activity Diagrams

UML activity diagrams can be used to specify workflows. This makes them a
rival of Ptera in the same domain of applications, such as the model optimiza-
tion application. In a brief comparison between the two, we find that Ptera
models can be considered as a descendant of activity diagrams, which have ex-
tra event queues that allow to schedule multiple tasks in the workflow for future
processing.

As an example, the top-level model in Fig. 14 is similar to an activity dia-
gram with the only difference being the conditions are tested on the scheduling
relations instead of in dedicated test blocks. Each event corresponds to a task,
with the initial event corresponding to a starting task. There is no explicit end-
ing task but we could mark the WriteModel event to be final in that case. The
submodel associated with the Optimize event looks less like an activity diagram
because in the latter, never can multiple tasks be scheduled at the same time.
In our case, the multiple Transform events are scheduled to immediately occur
after Start because they independently transform different parts of the model in
the Model parameter. The designer need not explicitly specify an order (though
the discussion in Section 2.4.3 provides a unique execution order). Furthermore,
each Test event in the submodel schedules back the corresponding Transform
event only if the last transformation in that Transform event was successful.
This demonstrates how a more complicated workflow can be broken down into
independent workflows that are designed separately.

6.5 Models of Computation in Ptolemy 11

In the Ptolemy project [13, 50] we study heterogeneous models of computation
and their composition. As part of this work, we implemented Ptera in the
actor abstract semantics that permits composition of Ptera with other models
of computation. We show that, as as member in the family, Ptera interacts
with other existing models of computation out of the box. In this paper we
discussed using Ptera within DE and FSM within Ptera. There are many other
possible types of composition, such as SDF within Ptera and SR within Ptera.
In our future work, we intend to explore these types of composition in practical
applications.

Some models of computation in Ptolemy II intrinsically support concurrency.
For example, the DE model of computation requires only a partial order between
events in an execution. Any execution that satisfies the partial order, includ-
ing parallel execution featuring concurrent firing of actors, is allowed. More
importantly, the designer need not explicitly create threads or manage the in-
tercommunication between threads. This significantly simplifies the designer’s
work and reduces the chances of design errors [51]. By composing DE with

37

Ptera, we envision disciplined concurrency to be exercised over sequential Ptera
components, yielding flexible, extensible, robust and efficient designs.

7 Conclusion

We introduce the Ptera model of computation, an extension of event graphs, and
we provide algorithms for executing models. We show that Ptera models can
be composed hierarchically with other models of computation, and well-defined
semantics can be obtained by employing an actor abstract semantics for model
execution. Simple, suggestive examples are given to demonstrate the behavior
of certain types of composition.

In practice we have encountered various applications. In this paper we em-
phasize the strengths of Ptera in modeling complex control systems, sequential
workflows and timed systems with unbounded states. We provide our assess-
ment based on a thorough comparison with existing modeling languages includ-
ing FSMs (finite state machines), UML Statecharts and activity diagrams.

8 Acknowledgements

The authors would like to acknowledge very helpful comments and suggestions
from Elizabeth Latronico (Bosch). We also thank Christopher Brooks for pack-
aging the models for on-line access.

References

[1] Lee W. Schruben. Simulation modeling with event graphs. Communications
of the ACM, 26(11):957-963, 1983.

ee W. Schruben. Building reusable simulators using hierarchical event

2] Lee W. Schrub Buildi ble simul ing hi hical
graphs. In Winter Simulation Conference (WSC 95), pages 472-475, Los
Alamitos, CA, USA, December 1995. IEEE Computer Society.

[3] Som T. K. and R. G. Sargent. A formal development of event graph models
as an aid to structured and efficient simulation programs. ORSA Journal
on Computing, 1(2):107-125, 1989.

[4] Arnold H. Buss and Paul J. Sanchez. Building complex models with LEGOs
(listener event graph objects). Winter Simulation Conference (WSC 02),
1:732-737, December 2002.

[5] Edward A. Lee and David G. Messerschmitt. Synchronous data flow. Pro-
ceedings of the IEEE, 75(9):1235-1245, September 1987.

[6] Edward A. Lee. Modeling concurrent real-time processes using discrete
events. Annals of Software Engineering, 7(1-4):25-45, 1999.

38

[7]

8]

[16]

[17]

[18]

Xiaojun Liu and Edward A. Lee. CPO semantics of timed interactive actor
networks. Theoretical Computer Science, 409(1):110-125, December 2008.

Ricki G. Ingalls, Douglas J. Morrice, and Andrew B. Whinston. Eliminating
canceling edges from the simulation graph model methodology. In WSC
’96: Proceedings of the 28th conference on Winter simulation, pages 825—
832, Washington, DC, USA, 1996. IEEE Computer Society.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking.
MIT Press, January 2000.

David Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8(3):231-274, 1987.

Arturo I. Concepcion and Bernard P. Zeigler. DEVS formalism: A frame-
work for hierarchical model development. IEEFE Transactions on Software
Engineering (TSE), 14(2):228-241, February 1988.

Rainer Fehling. A concept of hierarchical Petri nets with building blocks.
In Proceedings of the 12th International Conference on Application and
Theory of Petri Nets, pages 148-168, London, UK, 1993. Springer-Verlag.

Johan Eker, Jorn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, J. Lud-
vig, Stephen Neuendorffer, S. Sachs, and Yuhong Xiong. Taming hetero-
geneity — the Ptolemy approach. Proceedings of the IEEE, 91(1):127-144,
2003.

Axel Jantsch and Ingo Sander. Models of computation and languages for
embedded system design. IEFEE Proceedings on Computers and Digital
Techniques, 152(2):114-129, 2005.

Yuan Lin, Robert Mullenix, Mark Woh, Scott Mahlke, Trevor Mudge, Alas-
tair Reid, and Krisztian Flautner. SPEX: A programming language for
software defined radio. In Software Defined Radio Technical Conference
and Product Ezxposition, Orlando, November 2006.

Cécile Hardebolle and Frédéric Boulanger. ModHel’X: A component-
oriented approach to multi-formalism modeling. In Model Driven Engi-
neering Languages and Systems (MoDELS), pages 247258, Nashville, TN,
USA, September 2007.

Jie Liu and Edward A. Lee. Component-based hierarchical modeling of
systems with continuous and discrete dynamics. In Proceedings of the 2000
IEEE International Symposium on Computer-Aided Control System De-
sign, pages 95-100, Anchorage, Alaska, USA, September 2000.

Gang Zhou. Dynamic dataflow modeling in Ptolemy II. Technical Report
UCB/ERL M05/2, EECS Department, University of California, Berkeley,
December 2004.

39

[19]

[20]

[26]

[27]

[28]

[29]

[30]

Alain Girault, Bilung Lee, and Edward A. Lee. Hierarchical finite state ma-
chines with multiple concurrency models. IEEFE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 18(6):742-760, 1999.

Albert Benveniste and Gérard Berry. The synchronous approach to re-
active and real-time systems. Proceedings of the IEEE, 79(9):1270-1282,
September 1991.

Gilles Kahn. The semantics of a simple language for parallel program-
ming. In J. L. Rosenfeld, editor, Information Processing, pages 471-475,
Stockholm, Sweden, August 1974. North Holland Publishing Company.

Gilles Kahn and David B. Macqueen. Coroutines and networks of parallel
processes. Information Processing, pages 993-998, 1977.

Edward A. Lee and Thomas M. Parks. Dataflow process networks. Pro-
ceedings of the IEEE, 83(5):773-801, 1995.

C. A. R. Hoare. Communicating sequential processes. Communications of
the ACM, 21(8):666-677, August 1978.

Antoon Goderis, Christopher Brooks, Ilkay Altintas, Edward A. Lee, and
Carole A. Goble. Composing different models of computation in Kepler
and Ptolemy II. In International Conference on Computational Science
(ICCS), pages 182-190, Beijing, China, May 2007.

Edward A. Lee. Model-driven development - from object-oriented design
to actor-oriented design. In Workshop on Software Engineering for Embed-
ded Systems: From Requirements to Implementation (a.k.a. The Monterey
Workshop), Chicago, 2003.

Edward A. Lee and Stephen Neuendorffer. Classes and subclasses in actor-
oriented design. In International Conference on Formal Methods and Mod-
els for Co-Design (MEMOCODE), pages 161-168, San Diego, California,
USA, June 2004.

Edward A. Lee, Xiaojun Liu, and Stephen Andrew Neuendorffer. Classes
and inheritance in actor-oriented design. Technical Report UCB/EECS-
2006-154, EECS Department, University of California, Berkeley, November
2006.

Adam Cataldo, Elaine Cheong, Thomas Huining Feng, Edward A. Lee,
and Andrew Christopher Mihal. A formalism for higher-order composi-
tion languages that satisfies the Church-Rosser property. Technical Report
UCB/EECS-2006-48, EECS Department, University of California, Berke-
ley, May 2006.

James Adam Cataldo. The power of higher-order composition languages
in system design. PhD thesis, EECS Department, University of California,
Berkeley, December 2006.

40

[31]

[32]

[33]

[38]

Andrés Balogh and Déniel Varr6. Advanced model transformation language
constructs in the VIATRA2 framework. In SAC ’06: Proceedings of the
2006 ACM Symposium on Applied Computing, pages 1280-1287, Esslingen,
Germany, October 2006.

Ye Zhou and Edward A. Lee. Causality interfaces for actor networks. ACM
Transactions on Embedded Computing Systems (TECS), 7(3):1-35, 2008.

Patricia Derler, Thomas Huining Feng, Edward A. Lee, Slobodan Matic,
Hiren D. Patel, Yang Zhao, and Jia Zou. PTIDES: A programming model
for distributed real-time embedded systems. Technical Report UCB/EECS-
2008-72, EECS Department, University of California, Berkeley, May 2008.

Patricia Derler, Edward A. Lee, and Slobodan Matic. Simulation and im-
plementation of the PTIDES programming model. In Proceedings of the
12th IEEE International Symposium on Distributed Simulation and Real
Time Applications, Vancouver, Canada, October 2008.

Edward A. Lee. Finite state machines and modal models in ptolemy ii.
Technical Report UCB/EECS-2009-151, EECS Department, University of
California, Berkeley, November 1 2009.

Jie Liu and Edward A. Lee. A component-based approach to modeling
and simulating mixed-signal and hybrid systems. ACM Transactions on
Modeling and Computer Simulation (TOMACS), 12(4):343-368, October
2002.

Trip Denton, Edward Jones, Srini Srinivasan, Ken Owens, and Richard W.
Buskens. NAOMI — an experimental platform for multi-modeling. In MoD-
ELS ’08: Proceedings of the 11th International Conference on Model Driven
Engineering Languages and Systems, pages 143-157, Toulouse, France,
2008.

Christopher Brooks, Chihhong Cheng, Thomas Huining Feng, Edward A.
Lee, and Reinhard von Hanxleden. Model engineering using multimodeling.
In 1st International Workshop on Model Co-Evolution and Consistency
Management (MCCM 2008), Toulouse, France, September 2008.

Armin Biere, Alessandro Cimatti, Edmund E. Clarke, Ofer Strichman, and
Yunshan Zhu. Bounded model checking. Advances in Computers, 58, 2003.

Andy Schiirr. Specification of graph translators with triple graph gram-
mars. In WG ’94: Proceedings of the 20th International Workshop on
Graph-Theoretic Concepts in Computer Science, pages 151-163. Springer-
Verlag, 1994.

Thomas Huining Feng and Edward A. Lee. Scalable models using model
transformation. In 1st International Workshop on Model Based Architect-
ing and Construction of Embedded Systems (ACESMB 2008), Toulouse,
France, September 2008.

41

[42]

[43]
[44]

[51]

A.R. van der Valk. A conversion from SIGMA event graphs to the SMS
C++ class library, August 1995.

SigmaWiki. http://sigmawiki.com/.

Edward A. Lee, Stephen Neuendorffer, and Michael J. Wirthlin. Actor-
oriented design of embedded hardware and software systems. Journal of
Circuits, Systems, and Computers, 12(3):231-260, 2003.

Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram
Ludascher, and Steve Mock. Kepler: An extensible system for design and
execution of scientific workflows. In Scientific and Statistical Database Man-
agement (SSDBM), pages 423-424, Santorini Island, Greece, June 2004.

James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 1981.

Lee Schruben and Enver Yiicesan. Transforming Petri nets into event graph
models. In Winter Simulation Conference (WSC 94), pages 560-565, San
Diego, CA, USA, 1994. Society for Computer Simulation International.

Edmund M. Clarke, Himanshu Jain, and Nishant Sinha. Grand challenge:
Model check software. In Verification of Infinite-State Systems with Ap-
plications to Security (VISSAS), pages 55—68, Timisoara, Romania, March
2005.

Luca de Alfaro and Thomas A. Henzinger. Interface automata. In
ESEC/FSE: Proceedings of the 8th European Software Engineering Con-
ference / 9th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 109-120, Vienna, Austria, 2001. ACM.

Christopher Brooks, Edward A. Lee, Xiaojun Liu, Stephen Neuendorffer,
Yang Zhao, and Haiyang Zheng. Heterogeneous concurrent modeling and
design in Java (volume 1: Introduction to Ptolemy II). Technical Report
UCB/EECS-2008-28, EECS Department, University of California, Berke-
ley, April 2008.

Edward A. Lee. The problem with threads. IEEE Computer, 39(5):33-42,
2006.

42

	Introduction
	Syntax and Semantics of Flat Models
	Introductory Examples
	Arguments
	Canceling Relations
	Simultaneous Events
	LIFO and FIFO Policies
	Priorities
	Identifiers
	Designs with Atomicity

	Model Execution Algorithm
	Metaphorical Example: Car Wash Simulation

	Hierarchical Models
	An Abstract Semantics for Model Execution
	Ptera Semantics in the Actor Abstract Semantics
	Semantic Equivalence for Flat Models
	Hierarchical Car Wash Model

	Composition with Heterogeneous Models of Computation
	Composition with DE
	Overview of the DE Director
	Example
	Processing of DE Events
	External Inputs and Outputs

	Composition with FSMs
	Overview of the FSM Director
	Example

	Hierarchical Heterogeneous Model Design

	Example Applications
	Complex Control System
	Sequential Workflow: Model Optimization
	Timed System with Unbounded States: Car Wash

	Related Work
	Modeling Views
	Hierarchical Composition
	FSMs and UML Statecharts
	UML Activity Diagrams
	Models of Computation in Ptolemy II

	Conclusion
	Acknowledgements

