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A Formalism for Higher-Order Composition

Languages that Satisfies the Church-Rosser

Property

Adam Cataldo Elaine Cheong Thomas Huining Feng
Edward A. Lee Andrew Mihal

Abstract

In actor-oriented design, programmers make hierarchical compositions
of concurrent components. As embedded systems become increasingly
complex, these compositions become correspondingly complex in the num-
ber of actors, the depth of hierarchies, and the connections between ports.
We propose higher-order composition languages as a way to specify these
actor-oriented models. The key to these languages is the ability to suc-
cinctly specify configurations with higher-order parameters—parameters
that themselves might be configurations. We present a formalism which
allows us to describe arbitrarily complex configurations of components
with higher-order parameters. This formalism is an extension of the stan-
dard λ calculus.

1 Introduction

Actor-oriented design [19] is commonplace in embedded systems. In actor-
oriented design, programmers model concurrent components (called actors)
which communicate with one another through ports. Configurations, or hierar-
chies of interconnected components, are used to bundle networks of components
into single components. Of course, each component may itself be thought of as
a configuration, so we will cease to make a distinction between the two. The
resulting systems are typically easier to reason about than those programmed
with threads [20], since concurrent interaction is much more explicit. Examples
of actor-oriented languages include hardware description languages [28], coor-
dination languages [27], architecture description languages [23], synchronous
languages [4], Giotto [14], SystemC [1], SHIM [12], CAL [13], and many more.
Many software tools, including Simulink [10], LabVIEW [17], and Ptolemy II
[7] provide graphical environments for actor-oriented design.

For large embedded systems, it may be appropriate to use different models of
computation for component interaction at different levels of a model’s hierarchy.
These are called heterogeneous or multi-paradigm [31]. Systems metamodeling
[26] tools, such as GME [18], make it easier to create domain specific modeling
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environments, while model-based design tools, such as Ptolemy II, make it eas-
ier to construct models with heterogeneous behavior. Frameworks such as the
tagged signal model [21, 5] make it easier to reason about such systems.

These approaches make it simpler to design systems with complex seman-
tics. As the number of software and hardware components in embedded systems
grows larger and larger, however, new techniques for simple syntactic descrip-
tions of systems, whether visual or textual, will become equally important. For
example, imagine designing a system with 10, 000 components. If these compo-
nents must be instantiated and connected manually, the design process will be
slow and error-prone. We wish to have automated tools with a strong mathe-
matical basis to create such complex systems.

We thus propose higher-order composition languages as a way to specify
actor-oriented models. At Berkeley, we are developing such a language that we
call Ptalon. The key to these languages is the ability to succinctly specify con-
figurations with higher-order parameters—parameters that themselves might be
configurations. As an example, a parameterized configuration may describe a
distributed sort application, with a “divide” component parameter, a “conquer”
component parameter, and a parameter for the respective numbers of each com-
ponent. A programmer will specify this configuration once and can then use
it for an arbitrary number of components with arbitrary divide and conquer
instances. This particular example is similar to the MapReduce programming
pattern used by Google for distributed computation [11].

In fact, many methods of describing such systems have already been used in
embedded system design. For instance, recursive structures can be specified in
VHDL [22] to simplify hardware descriptions, and Bluespec System Verilog [6]
brings such features to the system level through many forms of parameterization.
Both [29] and [9] propose higher-order languages for embedded system design,
and [16] suggests higher-order Petri nets, in which Petri nets themselves may be
tokens, as a method to make more reusable Petri net structures. The Liberty
Simulation Environment [30] supports higher-order parameters in its system
modeling environment. π calculus [25] is widely used in describing connected
and communicating components. However, π calculus as a mathematical basis
lacks the Church-Rosser property [3]. Its non-determinism also makes it hard
to reason deterministically about the design.

In the Ptalon project, we seek to take such work a step further by developing
a simple, generic formalism in which we can describe configurations of compo-
nents with higher-order parameters. We want the formalism to easily reflect
structure found in current and future actor-oriented languages.

In any composition language, one should be able to:

1. Describe the interface of a component.

2. Describe the parallel composition of multiple components.

3. Establish links between components.

4. Create new components through hierarchy.

2



In addition to these four properties, in a higher-order composition language,
one should also be able to:

5. Describe higher-order parameters to a configuration.

One of the first questions that comes up is, “Do we need types?” Standard
types like characters and doubles seem largely irrelevant to a higher-order com-
position language. They certainly have uses, such as specifying the data types
we wish to allow on particular ports, but we seek to focus on the larger problem
of how to specify extremely flexible configurations via higher-order parameters.

If our formalism omits types, it may at first seem impossible to parameterize
configurations with integers, such as a configuration which has a numeric para-
meter to specify how many instances of another configuration to wire together
in series. In our formalism, representing a number is no different than represent-
ing a configuration, however, we have no such problem. This is the basic idea
behind Church numerals in λ calculus, where numbers are represented by terms
in the calculus. In this paper, we will show that the connection to λ calculus
turns out to be much deeper than just that.

In particular, we will show how a slight extension of λ calculus provides
a formalism for higher-order composition languages, free of any type system.
We are not suggesting this as a concrete higher-order composition language but
as a mathematical framework for composition languages in general. We are
currently developing such a language, Ptalon, which will provide a more user-
friendly syntax, but will be firmly grounded in the formalism given here, and
will leverage its higher-order nature.

There are several practical insights that come out of the study of this the-
oretical model. Because our system is completely untyped, all the operators
we create are generic; they can operate on data of any type. Because we ex-
tend λ calculus, higher-order functions are first class citizens of the calculus.
Thus, many standard computational entities, such as numbers, boolean values,
and ordered pairs, are simply particular higher-order functions in our calculus.
Moreover, we will show that any configuration is also just another higher-order
function. Finally, we will provide a justification that this syntax supports the
kinds of systems we are interested in modeling.

We will try to keep the exposition self-contained, but we assume the reader
has at least a basic understanding of λ calculus. To the novice, we recommend
[3] as a great help in understanding the much larger context of λ calculus.

2 Some Examples in the Calculus

Before we rigidly define our calculus, we begin with a few example expressions.
Consider a simple component which has two ports, named in and out. In our
calculus, we might model this as

IOComp ≡ λin.λout.(ε (⊕ in out))
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Here ≡ means syntactic identity. Thus we use IOComp as a shorthand for the
expression on the right. The (⊕ in out) subexpression means to compose entities
named in and out in parallel. The ε is an operator that in our calculus yields
an encapsulation, or a hiding of arguments that are not explicitly exposed. The
λin means to link the entity in to the interface, and the λout means to link the
entity out to the interface.

We show a pictorial interpretation of this subexpression:

1 2
IOComp

This picture is similar in both character and spirit of Milner’s flowgraphs [24].
Note, however, that names are irrelevant; we number the ports to denote their
corresponding order in the λ expression, but the following expression would have
an identical picture:

IOComp′ ≡ λa.λb.(ε (⊕ a b))

We can easily prove that for all x, y:

((IOComp x) y) = ((IOComp′ x) y)

where A = B means that A and B reduce to the same expression.
Now, suppose we wish to connect two IOComp components in series. There

are actually several ways we can do it in this calculus, but we show one:

Seq ≡ λin.λout.(ε λr.(⊕ ((IOComp in) r) ((IOComp r) out)))

In this expression, the ε encapsulates the relation r between the output of one
IOComp component and the input of the other. r is no longer part of the
interface. This expression will reduce to the expression with the picture below,
with the dot in the middle connection representing this relation:

Seq
1 2

Now suppose we wish to connect an arbitrary number of IOComp compo-
nents in series. We first encode numbers as higher-order models, using Church
numerals [3]:

C0 ≡ Zero

Cn+1 ≡ Succ Cn
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where

Zero ≡ λf.λx.x

Succ ≡ λc.λf.λx.(f ((c f) x))

We then define the following term:

Series ≡ λa.λb.λin.λout.(ε λr.(⊕ ((a in) r) ((b r) out)))

Then we can show that

((Cn (Series IOComp)) IOComp) (1)

represents n + 1 copies of the IOComp component linked in series. Specifically,
when n = 1, (1) reduces to Seq; when n = 2, (1) reduces to the expression with
the picture below:

1 2

((C2 (Series IOComp)) IOComp)

Before we give a similar definition for parallel composition, we consider a
few standard λ calculus terms:

True ≡ λx.λy.x (2)
False ≡ λx.λy.y (3)

The ⊕ operator that we have used thus far is our parallel composition operator.
With the parallel reduction that we define later, we have

((⊕ A B) C) = (⊕ ((C True) A) ((C False) B))

This is a mechanism for passing parameters to the members of a composition.
We now give the following nonstandard λ terms:

Left ≡ λd.λl.λt.((l (t d)) t) (4)
Right ≡ λd.λl.λt.((l t) (t d)) (5)

This way if we compose A and B in parallel and wish to pass D to A, we can
prove that

((⊕ A B) (Left D)) = (⊕ (A D) B)

Similarly if we wish to pass D to B, we can prove that

((⊕ A B) (Right D)) = (⊕ A (B D))

5



Now we define

Parallel ≡ λa.λb.(⊕ a b)

((Cn (Parallel IOComp)) IOComp) represents n + 1 IOComp components in
parallel. As an example,

((C2 (Parallel IOComp)) IOComp) =
(⊕ IOComp (⊕ IOComp IOComp))

This represents three components in parallel. If we wish to expose only the first
port of the first IOComp and the first port of the last component, we could
write,

λa.λb.(ε (((C2 (Parallel IOComp)) IOComp) (Left a) (Right (Right b)))) =
λa.λb.(ε (⊕ (IOComp a) (⊕ IOComp (IOComp b))))

This expression can be represented by the following picture.

1

2

3 The Formalism

We have now explained the basic building blocks of our calculus by example.
In this section, we shall develop the formalism. Let V be a well-ordered, de-
numerable (countable and infinite) set of variables. By convention, x, y, z are
members of V . We build a set T of model terms inductively, with A,B,C ∈ T
by convention.

Definition 1. The set T is defined inductively by:

x ∈ V ⇒ x ∈ T (6)
A ∈ T ⇒ (ε A) ∈ T (7)

A,B ∈ T ⇒ (A B) ∈ T (8)
(⊕ A B) ∈ T (9)

A ∈ T , x ∈ V ⇒ λx.A ∈ T (10)
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Rules 6, 8, and 10 by themselves define the syntax of pure λ calculus [3].
We will often omit parentheses. We note that application (Rule 8) is left

associative, whereas abstraction (Rule 10) is right associative. Thus,

λx.x z λy.x y

is equivalent to
λx.((x z) (λy.(x y)))

We may also arbitrarily add parentheses to disambiguate terms.
We now define subterms. This extends the definition of subterms in [2].

Definition 2. The subterm function Sub : T → P(T ) returns the set of sub-
terms of each term argument:

Sub(x) = {x}
Sub((ε A)) = Sub(A) ∪ {(ε A)}

Sub((A B)) = Sub(A) ∪ Sub(B) ∪ {(A B)}
Sub((⊕ A B)) = Sub(A) ∪ Sub(B) ∪ {(⊕ A B)}

Sub(λx.A) = Sub(A) ∪ {λx.A}

If A ∈ Sub(B), we write A 4 B, and call 4 the subterm order on T .

We note that (T ,4) is a well-founded partial order, whose minimal elements
are exactly the elements of V . A subterm A may occur in B several times. For
instance, λx.x occurs in (⊕ (λx.x) (λx.x)) twice.

Definition 3. The function FV : T → P(V ), which returns the set of free
variables FV (A) of a term A, is defined inductively as follows:

FV(x) = {x}
FV((ε A)) = FV(A)

FV((A B)) = FV(A) ∪ FV(B)
FV((⊕ A B)) = FV(A) ∪ FV(B)

FV(λx.A) = FV(A) \ {x}

As in [15], for subterm λx.A of B, A is called the scope of λx, and x is
bound in A. Note that a bound variable is not free. We call a term B closed if
FV(B) = ∅.

Definition 4. A term A is a configuration if and only if

1. It is a closed term. That is FV(A) = ∅.

2. There do not exist terms B,C ∈ T such that (B C) 4 A.

7



Note that since all variables are bound in a term which defines a configura-
tion, all variables in such terms correspond to links between entities or links to
the interface. Any occurrence of (⊕ A B) as a subterm corresponds to the par-
allel composition of entities A and B. Finally, any occurrence of the ε operator
gives us hierarchy through encapsulation. While we exclude function applica-
tion, a term with function application may reduce to a configuration, as the
examples in the previous section demonstrated. Thus, a configuration in this
form is “unparameterized.”

Given a term A, we let A[x := B] denote the substitution of all free occur-
rences of x in A with the term B. For example,

(x y (λx.x))[x := (λz.z)] = (λz.z) y (λx.x)

Formally,

x[y := B] ≡

{
B x ≡ y

x x 6≡ y

(ε A) [y := B] ≡ (ε A[y := B])
(A1 A2) [y := B] ≡ ((A1[y := B]) (A2[y := B]))

(⊕ A1 A2) [y := B] ≡ (⊕ (A1[y := B]) (A2[y := B]))

(λx.A) [y := B] ≡


(λx.A) x ≡ y

(λx.(A[y := B])) x 6≡ y ∧ x /∈ FV(B)
(λz.((A[x := z])[y := B])) x 6≡ y ∧

z /∈ FV(A) ∪ FV(B)

In this last equation, we assume a well ordered denumerable set V of variables
and choose z to be the least element such that z /∈ FV(A) ∪ FV(B). From this
it is easy to derive that

FV(A[x := B]) =

{
(FV(A) \ {x}) ∪ FV(B) x ∈ FV(A)
FV(A) x /∈ FV(A)

Now suppose A is a term with y /∈ FV(A). If λx.A is a subterm of B,
the act of replacing an occurrence of λx.A in B with λy.(A[x := y]) is called
α-conversion. If term C can be obtained from B from a finite (possibly zero)
number of α-conversions, we write C ≡α B and say that C is α-congruent to
B. For example,

λx.(ε x) ≡α λy.(ε y)

From now on, we will not distinguish between α-congruent terms.

Definition 5. Any term of the form

((λx.A) B)

is a β-redux and the corresponding term

A[x := B]
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is its β-contractum. β-contracting is the act of replacing a β-redux with its
β-contractum. Given a term D with a β-redux as a subterm, if the result of
replacing the subterm with its β-contractum results in term E, we say that

D →β E

Any term of the form
((⊕ A B) C)

is a parallel redux and the corresponding term

(⊕ ((C True) A) ((C False) B))

is its parallel contractum. Parallel contracting is the act of replacing a parallel
redux with its parallel contractum. Given a term D with a parallel redux as a
subterm, if the result of replacing the subterm with its parallel contractum results
in term E, we say that

D →⊕ E

Finally we let
� = (→β ∪ →⊕)∗

If A � B, we say that A reduces to B. We define = inductively by

A � B ⇒ A = B

B = A ⇒ A = B

A = C,C = B ⇒ A = B

The following theorem shows the Church-Rosser property [3] of this calculus.
The complete proof can be found in the appendix.

Theorem 6. Given A,B1, B2 ∈ T with A � B1 and A � B2, there exists a
B3 ∈ T with B1 � B3 and B2 � B3.

From this theorem, we can derive many useful properties of our calculus.
For instance, it is easy to show that if A = B, then there exists a C such that
A � C and B � C.

Given a term in our calculus, we would like to know whether or not it re-
duces to a configuration. The answer to this question is undecidable, as our
next theorem shows. We expect such undecidability from any sufficiently ex-
pressive formalism. However, in many practical situations, we can prove that a
term does reduce to a configuration. For instance, we can show that for all n,
((Cn (Series IOComp)) IOComp) satisfies this property.

Theorem 7. Let C ⊂ T be the set of configurations. Let

U = {A ∈ T |∃B ∈ C.A � B}

It is undecidable whether a particular A ∈ T belongs to U .
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Proof. First note that there exists an injective mapping gd : T → N, where N
is the set of natural numbers. This is called the Gödel numbering of T . We
refer the interested reader to [8], to see how one might create such a function.
To show undecidability we must show that there does not exist a recursive total
function φ : N → N such that for all A ∈ T ,

φ(gd(A)) =

{
0 A ∈ U
1 A /∈ U

If φ exists, then we call U recursive.
Now suppose A ∈ C and A � B, with B an arbitrary member of T . Since

we disallow function application in configurations, B ≡ A ∈ C. Thus C is closed
under reductions.

We now show that U is closed under equality. Suppose D ∈ U and D = E,
with E an arbitrary member of T . There must exist a F ∈ T such that D � F
and E � F . Since D ∈ U , there exists a G ∈ C with D � G. By the Church-
Rosser property in Theorem 7, there exists an H ∈ T with G � H and F � H.
Since C is closed under reductions, H ∈ C. Thus E � F � H ∈ C, so E ∈ U .
Thus U is closed under equality.

³³³
³³

D = E ∈ U

F
G ∈ C

H ∈ C

The Scott-Curry theorem [15] shows that in λ calculus any set of λ terms
closed under equality is not recursive. It is easy to extend this theorem to our
calculus, which has a superset of terms and a superset of reduction rules. We
thus conclude that U is not recursive, so it is undecidable whether a particular
A ∈ T belongs to U .

4 An Example Proof

To show how we might use this calculus, we give a simple proof of a claim that
we made in Section 2, namely, that

((C1 (Series IOComp)) IOComp) = Seq
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To see this note that

((C1 (Series IOComp)) IOComp)
≡ ((Succ C0) (Series IOComp)) IOComp)
≡ (((λc.λf.λx.(f ((c f) x))) Zero) (Series IOComp)) IOComp)
� (((λf.λx.(f (((λf.λx.x) f) x))) (Series IOComp)) IOComp)
� (((λf.λx.(f x)) (Series IOComp)) IOComp)
� ((Series IOComp) IOComp)
≡ ((λa.λb.λin.λout.(ε λr.(⊕ ((a in) r) ((b r) out))) IOComp) IOComp)
� λin.λout.(ε λr.(⊕ ((IOComp in) r) ((IOComp r) out)))
≡ Seq

To see that this indeed reduces to a configuration, note first that for any
x, y ∈ V

(IOComp x y) � (ε (⊕ x y))

Then
Seq � λin.λout.(ε (λr.(⊕ (ε (⊕ in r)) (ε (⊕ r out)))))

This term is closed and has no function application (A B) as a subterm, so it
is a configuration.

5 Justification of this Calculus

It may seem strange that we choose higher-order functions as the first-class
citizens of our calculus rather than configurations, but as we showed above
it is easy to express configurations as higher-order functions. We show that
this calculus satisfies all the properties we seek in a higher-order composition
language, as mentioned in the introduction:

1. Describe the interface of a configuration.

2. Describe the parallel configuration of multiple components.

3. Establish links between configurations.

4. Create new configurations through hierarchy.

5. Describe higher-order parameters to a configuration.

To see that we satisfy Property 1, note that the λ terms on the left hand
side of an expression define the interface of a configuration. For instance, the
interface of

λx.λy.(ε (⊕ x y))

has two parameters. When we consider a configuration, as defined in Definition
4, we will interpret all such λ terms as the ports of the configuration.

Note that when we apply one term to another, such as

((λx.x) IOComp)
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we will interpret the higher-order term on the right to represent an actual pa-
rameter of the λ term on the left.

Note that for a configuration with a parallel operator in the front, we may
infer an interface. For instance, in

(⊕ IOComp IOComp)

we may access ports of the two IOComp components by using the Left and
Right constants of Definitions 4 and 5. This operator also endows our calculus
with Property 2.

To establish links between configurations, as in Property 3, we bind their
variables together. For instance

λr.(⊕ (IOComp r) (IOComp r))

is used to link the first ports of the two components together. This term can be
reduced to an expression with the following picture:

1

2L

2R

We use the L and R to note whether we need to access this port via a Left or
Right term.

Should we wish to hide these ports, we can use

λr.(ε (⊕ (IOComp r) (IOComp r)))

which will reduce to an expression with this picture:

1

In this way, our encapsulation operator gives us hierarchy (Property 4).
Finally, by using λ calculus, we are able to satisfy Property 5. We simply

view a higher-order function in the calculus as a configuration with higher-order
parameters. While it may not reduce to a configuration for all parameters,
this is not really a problem; it simply reflects the fact that the parameterized
configuration may not be well defined for all actual parameters.
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6 Conclusions

We have introduced a calculus for higher-order composition languages. Through
examples, we have demonstrated the usefulness of this extended λ calculus in
constructing configurations with higher-order parameters. We have detailed
the formalism and a few of its implications, and showed that this calculus can
serve as a formalism for higher-order composition languages. With this calcu-
lus, the Ptalon project has a mathematical framework to guide future work in
constructing a concrete higher-order composition language.
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A A Proof of the Church-Rosser Property

This paper introduced a calculus for higher-order composition languages. This
calculus is an extension of the standard λ calculus [3]. This appendix contains
a proof of the Church-Rosser property for this extension.

Definition 1. Let V be a denumerable (countable and infinite) set of variables.
We build a set T of model terms inductively:

x ∈ V ⇒ x ∈ T (1)
A ∈ T ⇒ (ε A) ∈ T (2)

A,B ∈ T ⇒ (A B) ∈ T (3)
(⊕ A B) ∈ T (4)

A ∈ T , x ∈ V ⇒ λx.A ∈ T (5)

We will often omit parentheses. We note that application (Rule 3) is left
associative, whereas abstraction (Rule 5) is right associative.

Definition 2. We define A[x := B] inductively by

x[y := B] ≡

{
B x ≡ y

x x 6≡ y

(ε A) [y := B] ≡ (ε A[y := B])
(A1 A2) [y := B] ≡ ((A1[y := B]) (A2[y := B]))

(⊕ A1 A2) [y := B] ≡ (⊕ (A1[y := B]) (A2[y := B]))

(λx.A) [y := B] ≡


(λx.A) x ≡ y

(λx.(A[y := B])) x 6≡ y ∧ x /∈ FV(B)
(λz.((A[x := z])[y := B])) x 6≡ y ∧

z /∈ FV(A) ∪ FV(B)

Definition 3. Any term of the form

((λx.A) B)

is a β-redux and the corresponding term

A[x := B]

is its β-contractum. β-contracting is the act of replacing a β-redux with its
β-contractum. Given a term D with a β-redux as a subterm, if the result of
replacing the subterm with its β-contractum results in term E, we say that

D →β E

Any term of the form
((⊕ A B) C)
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is a parallel redux and the corresponding term

(⊕ ((C (λx.λy.x)) A) ((C (λx.λy.y)) B))

is its parallel contractum. Parallel contracting is the act of replacing a parallel
redux with its parallel contractum. To simplify the parallel contractum, let

True ≡ λx.λy.x

False ≡ λx.λy.y

Then the parallel contractum becomes

(⊕ ((C True) A) ((C False) B))

Given a term D with a parallel redux as a subterm, if the result of replacing the
subterm with its parallel contractum results in term E, we say that

D →⊕ E

Finally we let
� = (→β ∪ →⊕)∗

If A � B, we say that A reduces to B. We define = inductively by

A � B ⇒ A = B

B = A ⇒ A = B

A = C,C = B ⇒ A = B

The next definition is modeled after [3]. The purpose is to eventually extend
the Church-Rosser theorem to our calculus.

Definition 4. The set T is defined inductively by:

x ∈ V ⇒ x ∈ T
A ∈ T ⇒ (ε A) ∈ T

A,B ∈ T ⇒ (A B) ∈ T
(⊕ A B) ∈ T

A,B, C ∈ T ⇒ ((⊕ A B) C) ∈ T
A ∈ T , x ∈ V ⇒ λx.A ∈ T

A,B ∈ T , x ∈ V ⇒ ((λx.A) B) ∈ T

For terms in T we can extend the definition of substitution, as in A[x := B],
in the obvious way. In particular, we treat underlined versions of λ and ⊕ no
different than λ and ⊕ in Definition 2.

Definition 5. In T , any term of the form

((λx.A) B)
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or
((λx.A) B)

is a β-redux and the corresponding term

A[x := B]

is its β-contractum. β-contracting is the act of replacing a β-redux with its
β-contractum. Given a term D with a β-redux as a subterm, if the result of
replacing the subterm with its β-contractum results in term E, we say that

D →β E

Any term of the form
((⊕ A B) C)

or
((⊕ A B) C)

is a parallel redux and the corresponding term

(⊕ ((C True) A) ((C False) B))

is its parallel contractum. Parallel contracting is the act of replacing a parallel
redux with its parallel contractum. Given a term D with a parallel redux as a
subterm, if the result of replacing the subterm with its parallel contractum results
in term E, we say that

D →⊕ E

Finally we let
�T = (→β ∪ →⊕)∗

If A �T B, we say that A reduces to B.

Definition 6. Let | · | : T → T be defined so that |A| is equivalent to A with
each occurrence of λ replaced with λ and each occurrence of ⊕ replaced with ⊕.

Definition 7. We define φ : T → T inductively with

φ(x) ≡ x

φ((ε A)) ≡ (ε φ(A))
φ((A B)) ≡ (φ(A) φ(B))

φ((⊕ A B)) ≡ (⊕ φ(A) φ(B))
φ(((⊕ A B) C)) ≡ (⊕ ((φ(C) True) φ(A)) ((φ(C) False) φ(B)))

φ(λx.A) ≡ (λx.φ(A))
φ(((λx.A) B)) ≡ φ(A)[x := φ(B)]

Lemma 8. Given A′ ∈ T and B ∈ T , if |A′| � B, then there exists a B′ ∈ T
such that A′ �T B′ and |B′| ≡ B.
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Proof. First suppose |A′| →β B or |A′| →⊕ B. Then B′ can be obtained from A′

by contracting the corresponding redux. The result follows from transitivity.

Lemma 9. Given x, y ∈ V with x 6≡ y and A,B, C ∈ T with x /∈ FV (C) then

(A[x := B])[y := C] ≡ (A[y := C])[x := B[y := C]]

Proof. We prove this with induction on the structure of A.

1. Case: A ≡ x. Then

(A[x := B])[y := C] ≡ B[y := C]
≡ A[x := B[y := C]]
≡ (A[y := C])[x := B[y := C]]

2. Case: A ≡ y. Then

(A[x := B])[y := C] ≡ A[y := C]
≡ C

≡ C[x := B[y := C]]
≡ (A[y := C])[x := B[y := C]]

3. Case: A ≡ z where z 6≡ x and z 6≡ y. Then

(A[x := B])[y := C] ≡ A

≡ A[x := B[y := C]]
≡ (A[y := C])[x := B[y := C]]

4. Case: A ≡ (ε A1), for some A1. By the inductive hypothesis, the result
holds for A1. Then

(A[x := B])[y := C] ≡ ((ε A1)[x := B])[y := C]
≡ (ε (A1[x := B])[y := C])
≡ (ε (A1[y := C])[x := B[y := C]])
≡ ((ε A1)[y := C])[x := B[y := C]]
≡ (A[y := C])[x := B[y := C]]

5. Case: A ≡ (A1 A2), for some A1 and A2. By the inductive hypothesis,
the result holds for A1 and A2. Then

(A[x := B])[y := C] ≡ ((A1 A2)[x := B])[y := C]
≡ ((A1[x := B])[y := C] (A2[x := B])[y := C])
≡ ((A1[y := C])[x := B[y := C]]

(A2[y := C])[x := B[y := C]])
≡ ((A1 A2)[y := C])[x := B[y := C]]
≡ (A[y := C])[x := B[y := C]]
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6. Case: A ≡ (⊕ A1 A2), for some A1 and A2. By the inductive hypothesis,
the result holds for A1 and A2. Then

(A[x := B])[y := C] ≡ ((⊕ A1 A2)[x := B])[y := C]
≡ (⊕ (A1[x := B])[y := C] (A2[x := B])[y := C])
≡ (⊕ (A1[y := C])[x := B[y := C]]

(A2[y := C])[x := B[y := C]])
≡ ((⊕ A1 A2)[y := C])[x := B[y := C]]
≡ (A[y := C])[x := B[y := C]]

7. Case: A ≡ λz.A1 where z ∈ V and z ≡ x. By the inductive hypothesis,
the result holds for A1.

(A[x := B])[y := C] ≡ ((λz.A1)[x := B])[y := C]
≡ ((λx.A1)[x := B])[y := C]
≡ (λx.A1)[y := C]
≡ λx.A1[y := C]
≡ (λx.A1[y := C])[x := B[y := C]]
≡ ((λx.A1)[y := C])[x := B[y := C]]
≡ (A[y := C])[x := B[y := C]]

8. Case: A ≡ λz.A1 where z ∈ V and z ≡ y and y /∈ FV(B). By the
inductive hypothesis, the result holds for A1.

(A[x := B])[y := C] ≡ ((λz.A1)[x := B])[y := C]
≡ ((λy.A1)[x := B])[y := C]
≡ (λy.A1[x := B])
≡ (λy.A1[x := B[y := C]])
≡ (λy.A1)[x := B[y := C]]
≡ ((λy.A1)[y := C])[x := B[y := C]]
≡ (A[y := C])[x := B[y := C]]

9. Case: A ≡ λz.A1 where z ∈ V and z ≡ y and y ∈ FV(B). By the
inductive hypothesis, the result holds for A1. Let w be some variable such
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that w /∈ FV(A1) ∪ FV(B). Then

(A[x := B])[y := C] ≡ ((λz.A1)[x := B])[y := C]
≡ ((λy.A1)[x := B])[y := C]
≡ (λy.A1[x := B])[y := C]
≡ (λw.A1[x := B])[y := C]
≡ (λw.(A1[x := B])[y := C])
≡ ((λw.A1[y := C])[x := B[y := C]])
≡ ((λw.A1)[y := C])[x := B[y := C]]
≡ (A[y := C])[x := B[y := C]]

10. Case: A ≡ λz.A1 where z ∈ V and z 6≡ y and z 6≡ x. By the inductive
hypothesis, the result holds for A1.

(A[x := B])[y := C] ≡ ((λz.A1)[x := B])[y := C]
≡ ((λz.A1[x := B])[y := C])
≡ ((λz.A1[y := C])[x := B[y := C]])
≡ ((λz.A1)[y := C])[x := B[y := C]]
≡ (A[y := C])[x := B[y := C]]

Lemma 10. For all A,B ∈ T and x ∈ V ,

φ(A[x := B]) = φ(A)[x := φ(B)]

Proof. We prove this with induction on the structure of A.

1. Case: A ≡ x. Then

φ(A[x := B]) ≡ φ(B)
≡ x[x := φ(B)]
≡ φ(x)[x := φ(B)]
≡ φ(A)[x := φ(B)]

2. Case: A ≡ y 6≡ x. Then

φ(A[x := B]) ≡ φ(y)
≡ y

≡ y[x := φ(B)]
≡ φ(y)[x := φ(B)]
≡ φ(A)[x := φ(B)]
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3. Case: A ≡ (ε C), for some C. By the inductive hypothesis, the result
holds for C. Then

φ(A[x := B]) ≡ φ((ε C[x := B]))
≡ (ε φ(C[x := B]))
≡ (ε φ(C)[x := φ(B)])
≡ (ε φ(C))[x := φ(B)]
≡ φ((ε C))[x := φ(B)]
≡ φ(A)[x := φ(B)]

4. Case: A ≡ (C D), for some C and D. By the inductive hypothesis, the
result holds for C and D. Then

φ(A[x := B]) ≡ φ((C D)[x := B])
≡ φ((C[x := B] D[x := B]))
≡ (φ(C[x := B]) φ(D[x := B]))
≡ (φ(C)[x := φ(B)] φ(D)[x := φ(B)])
≡ (φ(C) φ(D))[x := φ(B)]
≡ φ((C D))[x := φ(B)]
≡ φ(A)[x := φ(B)]

5. Case: A ≡ (⊕ C D), for some C and D. By the inductive hypothesis, the
result holds for C and D. Then

φ(A[x := B]) ≡ φ((⊕ C D)[x := B])
≡ φ((⊕ C[x := B] D[x := B]))
≡ (⊕ φ(C[x := B]) φ(D[x := B]))
≡ (⊕ φ(C)[x := φ(B)] φ(D)[x := φ(B)])
≡ (⊕ φ(C) φ(D))[x := φ(B)]
≡ φ((⊕ C D))[x := φ(B)]
≡ φ(A)[x := φ(B)]

6. Case: A ≡ ((⊕ C D) E) for some C, D, and E. By the inductive hypoth-
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esis, the result holds for C, D, and E. Then

φ(A[x := B]) ≡ φ(((⊕ C D) E)[x := B])
≡ φ(((⊕ C D)[x := B] E[x := B]))
≡ φ(((⊕ C[x := B] D[x := B]) E[x := B]))
≡ (⊕ ((φ(E[x := B]) True) φ(C[x := B]))

((φ(E[x := B]) False) φ(D[x := B])))
≡ (⊕ ((φ(E)[x := φ(B)] True) φ(C)[x := φ(B)])

((φ(E)[x := φ(B)] False) φ(D)[x := φ(B)]))
≡ (⊕ ((φ(E) True)[x := φ(B)] φ(C)[x := φ(B)])

((φ(E) False)[x := φ(B)] φ(D)[x := φ(B)]))
≡ (⊕ ((φ(E) True) φ(C))[x := φ(B)]

((φ(E) False) φ(D))[x := φ(B)])
≡ (⊕ (((φ(E) True) φ(C))

(((φ(E) False) φ(D)))[x := φ(B)]
≡ φ(((⊕ C D) E))[x := φ(B)]
≡ φ(A)[x := φ(B)]

7. Case: A ≡ λx.C. By the inductive hypothesis, the result holds for C. Let
z be some variable not in FV(C) or FV(B). Then

φ(A[x := B]) ≡ φ((λx.C)[x := B])
≡ φ(λx.C)
≡ (λx.φ(C))
≡ (λx.φ(C))[x := φ(B)]
≡ φ(A)[x := φ(B)]

8. Case: A ≡ λy.C where y 6≡ x. By the inductive hypothesis, the result
holds for C. Suppose first that y ∈ FV(B), and let z be some variable not
in FV(C) or FV(B). Since the result holds for C it holds for C[y := z] in
this case. Then

φ(A[x := B]) ≡ φ((λy.C)[x := B])
≡ φ((λz.((C[y := z])[x := B])))
≡ (λz.φ((C[y := z])[x := B]))
≡ (λz.φ(C[y := z])[x := φ(B)])
≡ (λz.φ(C)[y := z])[x := φ(B)]
≡ (λy.φ(C))[x := φ(B)]
≡ φ(λy.C)[x := φ(B)]
≡ φ(A)[x := φ(B)]
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Now if y /∈ FV(B), we simply have

φ(A[x := B]) ≡ φ((λy.C)[x := B])
≡ φ((λy.C[x := B]))
≡ (λy.φ(C[x := B]))
≡ (λy.φ(C)[x := φ(B)])
≡ (λy.φ(C))[x := φ(B)]
≡ φ(λy.C)[x := φ(B)]
≡ φ(A)[x := φ(B)]

9. Case: A ≡ ((λx.C) D). By the inductive hypothesis, the result holds for
C and D. Then

φ(A[x := B]) ≡ φ(((λx.C) D)[x := B])
≡ φ(((λx.C)[x := B] D[x := B]))
≡ φ(((λx.C) D[x := B]))
≡ φ(C)[x := φ(D[x := B])]
≡ φ(C)[x := φ(D)[x := φ(B)]]
≡ (φ(C)[x := φ(D)])[x := φ(B)]
≡ φ(((λx.C) D))[x := φ(B)]
≡ φ(A)[x := φ(B)]

10. Case: A ≡ ((λy.C) D), where y 6≡ x. By the inductive hypothesis, the
result holds for C and D. Suppose first that y ∈ FV(B) and z /∈ FV(C)
or FV(B). In this case, the result will also hold for C[y := z]. Then

φ(A[x := B)) ≡ φ(((λy.C) D)[x := B])
≡ φ(((λy.C)[x := B] D[x := B]))
≡ φ(((λz.((C[y := z])[x := B])) D[x := B]))
≡ φ((C[y := z])[x := B])[z := φ(D[x := B])]
≡ (φ(C[y := z])[x := φ(B)])[z := φ(D)[x := φ(B)]]
≡ (φ(C[y := z])[z := φ(D)])[x := φ(B)]
≡ ((φ(C)[y := z])[z := φ(D)])[x := φ(B)]
≡ (φ(C)[y := φ(D)])[x := φ(B)]
≡ φ(((λy.C) D))[x := φ(B)]
≡ φ(A)[x := φ(B)]

Here we used the substitution lemma (Lemma 9).
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Now if y /∈ FV(B), we simply have

φ(A[x := B)) ≡ φ(((λy.C) D)[x := B])
≡ φ(((λy.C)[x := B] D[x := B]))
≡ φ(((λy.C[x := B]) D[x := B]))
≡ φ(C[x := B])[y := φ(D[x := B])]
≡ (φ(C)[x := φ(B)])[y := φ(D)[x := φ(B)]]
≡ (φ(C)[y := φ(D)])[x := φ(B)]
≡ φ(((λy.C) D))[x := φ(B)]
≡ φ(A)[x := φ(B)]

Again, we used the substitution lemma.

Lemma 11. Given A,B ∈ T , if A �T B, then φ(A) � φ(B).

Proof. We prove this by induction on the structure of �T .

1. Case: A →β B occurs from contracting a redux ((λx.C) D) which is a
subterm of A. By the previous lemma,

φ(C[x := D]) ≡ φ(C)[x := φ(D)]

so contracting the redux ((λx.φ(C)) φ(D)) in φ(A) will give φ(B).

2. Case: A →β B occurs from contracting a redux ((λx.C) D) which is a
subterm of A. Then φ(A) ≡ φ(B).

3. Case: A →⊕ B occurs from contracting a redux ((⊕ C D) E) which is a
subterm of A. Then contracting the redux ((⊕ φ(C) φ(D)) φ(E)) in φ(A)
will give φ(B).

4. Case: A →⊕ B occurs from contracting a redux ((⊕ C D) E) which is a
subterm of A. Then φ(A) ≡ φ(B).

The lemma then follows from transitivity.

Lemma 12. For all A ∈ T , |A| � φ(A).

Proof. We prove this by induction on the structure of A.

1. Case: A ≡ x. In this case, |A| ≡ x ≡ φ(A), so the result is trivial.

2. Case: A ≡ (ε B), where the result holds for B by the inductive hypothesis.
Then

|A| ≡ (ε |B|)
� (ε φ(B))
≡ φ(A)
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3. Case: A ≡ (B C), where the result holds for B and C by the inductive
hypothesis. Then

|A| ≡ (|B| |C|)
� (φ(B) φ(C))
≡ φ(A)

4. Case: A ≡ (⊕ B C), where the result holds for B and C by the inductive
hypothesis. Then

|A| ≡ (⊕ |B| |C|)
� (⊕ φ(B) φ(C))
≡ φ(A)

5. Case: A ≡ ((⊕ B C) D), where the result holds for B, C, and D by the
inductive hypothesis. Then

|A| ≡ |((⊕ B C) D)|
≡ ((⊕ |B| |C|) |D|)
� ((⊕ φ(B) φ(C)) φ(D))
� ((⊕ ((φ(D) True) φ(B)) ((φ(D) False) φ(C))
≡ φ(((⊕ B C) D))
≡ φ(A)

6. Case: A ≡ (λx.B), where the result holds for B by the inductive hypoth-
esis. Then

|A| ≡ (λx.|B|)
� (λx.φ(B))
≡ φ(A)

7. Case: A ≡ ((λx.B) C), where the result holds for B, C, and D by the
inductive hypothesis. Then

|A| ≡ ((λx.|B|) |C|)
� ((λx.φ(B)) φ(C))
� φ(B)[x := φ(C)]
≡ φ(((λx.B) C))
≡ φ(A)

Lemma 13. Given A,B1, B2 ∈ T with A →β B1 and A � B2, there exists a
B3 ∈ T with B1 � B3 and B2 � B3.
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Proof. Let B1 be the result of contracting the redux occurrence R ≡ ((λx.C) D)
in A. Create A′ ∈ T by replacing R in A with R′ ≡ ((λx.C) D). Then |A′| ≡ A
and φ(A′) ≡ B1. By Lemma 8, there exists B′

2 ∈ T such that A′ �T B′
2 and

|B′
2| ≡ B2.
Let B3 ≡ φ(B′

2). Then B2 � B3 by Lemma 12, and B1 � B3 by Lemma
11.

Lemma 14. Given A,B1, B2 ∈ T with A →⊕ B1 and A � B2, there exists a
B3 ∈ T with B1 � B3 and B2 � B3.

Proof. Let B1 be the result of contracting the redux occurrence R ≡ ((⊕ C D) E)
in A. Create A′ ∈ T by replacing R in A with R′ ≡ ((⊕ C D) E). Then |A′| ≡ A
and φ(A′) ≡ B1. By Lemma 8, there exists B′

2 ∈ T such that A′ �T B′
2 and

|B′
2| ≡ B2.
Let B3 ≡ φ(B′

2). Then B2 � B3 by Lemma 12, and B1 � B3 by Lemma
11.

Theorem 15. Given A,B1, B2 ∈ T with A � B1 and A � B2, there exists a
B3 ∈ T with B1 � B3 and B2 � B3.

Proof. If A � B1, there exists a sequence (A0, . . . , An) in T such that for each
i < n, either A0 →β Ai+1 or Ai →⊕ Ai+1, and A ≡ A0 and B1 ≡ An. We now
perform an induction over the length of this sequence.

1. Case: B1 ≡ A0 ≡ A. In this case the result is trivial. We choose B3 ≡
B2 ≡ B1 ≡ A.

2. Case: B1 ≡ Ai+1, where by the inductive hypothesis, there is a B′
3 such

that Ai � B′
3 and B2 � B′

3. If Ai →β Ai+1, then from Lemma 13, there
exists a B3 such that B′

3 � B3 and B1 � B3. If Ai →⊕ Ai+1, then from
Lemma 14, there exists a B3 such that B′

3 � B3 and B1 � B3. In either
case, B2 � B3 by transitivity.
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