
Modeling and Simulation Based Design with DCharts

Thomas Huining Feng and Hans Vangheluwe
Modeling, Simulation and Design Lab

McGill University
http://msdl.cs.mcgill.ca/

Abstract

This article studies the software development based on
modeling, simulation and code synthesis. DCharts, a stat-
echarts variant with extensions, are used to model a prac-
tical application: a traffic light system. The development
of this system emphasizes the use of various tools: AToM

�

is used as a visual modeling environment; SVM is the sim-
ulation engine to test the prototype of the model; SCC is
the code synthesizer that generates reusable source code in
multiple target languages. By successfully developing this
system, this article proposes a highly automatic approach
for modeling and simulation based design. This approach
improves software productivity, reliability and reusability.

1 Introduction to Modeling and Simulation
Based Design

As opposed to traditional software programming, mod-
eling and simulation based design has many advantages.
By modeling the behavior of the system in a formal way,
the designer can then focus on more abstract issues instead
of dealing with implementation details too early. The high-
level design, once validated, can be automatically trans-
formed into implementation at a much lower level with
tools. Provided that the high-level design is correct and
the tools involved in the transformations are also correct,
the resulting low-level implementation should also be cor-
rect. This process saves a lot of labor of the designer, and
it greatly improves software productivity and reliability.

1.1 The process of modeling, simulation and code
synthesis

The modeling and simulation based design process is
illustrated in Figure 1. A meta-model represents an exe-
cutable formalism used in this development. The designer
manually designs the behavior of the system as a model
in this formalism. The model can then be checked with
a model checking tool, if such a tool is available for the
formalism. The correctness of the model can then be for-
mally proved. The model designer (or model tester) may

Figure 1: Modeling and simulation based design process

generate a simulation model from the original model. The
simulation model is fed in a simulator to enable multiple
simulations. The results of those simulations are collected.
With those results, the designer verifies the conformance
between the model and the initial requirements. He/She
may also obtain performance metrics from those results,
which evaluates the efficiency and reveals potential bottle-
necks.

The simulation generation is usually automatic in that
the simulation model is the same as the original model, or
it can be done automatically with tools. Above this, model
checking tools are used to check the validity of the original
model, and simulators are used to simulate the simulation
model. All these are done automatically without human
intervention.

When the designer has enough confidence on the model,
code synthesis tools are used to generate execution model
from the original model. The execution model is directly
executed. It accepts user input and produces output. Its
behavior corresponds to the system requirements.

The code synthesis phase is also automatic. Code syn-
thesizers dedicated for the formalism accepts the original



model as input, and generates execution model in a tar-
get language. The model is also optimized by the tools to
improve run-time performance. The model designer need
not modify the execution model, provided that the original
model is correct and contains enough information for an
execution. Other execution details are added by the code
synthesis tools. The code is executable in its own right and
is independent of simulation environments. It is the release
version of the application.

1.2 The development of a TL (Traffic Light) sys-
tem

A TL (Traffic Light) system is studied as an example
in this article. It demonstrates the modeling and simula-
tion based design process. This system behaves as an au-
tonomous but also reactive traffic light. The initial require-
ments are as follows:

1. The traffic light has three colors: red, green and
yellow. Initially, the light is red. After being red
for 8 seconds1, it turns green. It remains in this color
for 5 seconds and then turns yellow. After another 2
seconds, it turns red again. The traffic light repeat-
edly changes colors in the same way.

2. During the first 6 seconds of being red, a pedestrian
may press a “Crosswalk” button to request the traffic
light to turn green so that he/she can get across. If
so, the light turns green 2 seconds after the button is
pressed.

3. A policeman may pause and resume the traffic light.
When being paused, the traffic light becomes yellow
and switches between ON and OFF with the interval of
0.5 second. When the light resumes functioning, it
first takes on the red color.

4. The policeman may also turn OFF the traffic light.
When turned ON again by the policeman, the traffic
light returns to the previous state exactly before it is
turned OFF.

Tools are used to automate the development of this
system. AToM

�

(A Tool for Multi-formalism and Meta-
Modeling) is the visual environment in which the original
model of the system is designed. SVM (Statechart Vir-
tual Machine) is the simulator that simulates the simulation
model, which is identical to the original model. Each sim-
ulation of the same model produces a trace recording its
run-time behavior. The traces can then be checked and an-
alyzed. SCC (StateChart Compiler) is then used to synthe-
size executable code from the model. This process high-
lights the use of automated tools and greatly reduces hu-
man labor.

1The time modeled in the system is shorter than reality for the conve-
nience of multiple simulations and executions.

Model checking and model verification of the confor-
mance between the model design and the initial require-
ments are out of the scope of this article. Formal model
checking for executable formalisms, such as the DCharts
formalism used here, is hard especially because they al-
low the specification of execution details in the models.
Actions in the models may change their state in an arbi-
trary way and make model checking even more challeng-
ing. Model verification by means of multiple simulations
and ERE (Extended Regular Expressions) is discussed in
[1].

As such, this article focuses on model design, model
simulation and code synthesis (and the reuse this code).

2 Model Design in the DCharts Formalism

The TL system is modeled with DCharts, a statecharts
variant with extensions. The model is explicitly designed
by the model designer, and this is the only creative work
that the designer needs to do.

2.1 Introduction to DCharts

DCharts [2] are an executable formalism based on
David Harel’s statecharts [3] [4]. The DCharts syntax in-
cludes the statecharts syntax. Constructs of statecharts,
such as hierarchical states, transitions between those states,
orthogonal components and history, are all inherited by
DCharts. Their semantics in DCharts conforms to the stat-
echarts semantics defined by David Harel.

Extensions to statecharts are added in DCharts. They
improve the modularity and reusability of the formalism.
The following extensions are also discussed in [2] and [5].

� Importation. A model designed in DCharts can also
be regarded as a reusable component, which can then
be imported into a state of another DCharts model.
All the states and transitions in the submodel (or, im-
ported model) are copied to the inside of that state
(importation state) at run-time. This means importa-
tion is done dynamically when the internal structure
of the importation state is required. For example, the
first transition to an importation state triggers an im-
portation, and the simulator/executor imports the re-
quired submodel to obtain the default substates of the
importation state. This dynamic behavior allows for
recursive importation, where a model imports itself
directly or indirectly, and hence creates a theoretically
infinite state hierarchy.

� Transition priorities. Each state of a model has a
property related to the priority of the transitions in
its scope (transitions from that state or substates of
that state). If that property is equal to ITF (Inner-
Transition-First), transitions in its scope are inner-
first (i.e., transitions from a state at a lower level



have higher priority). The opposite is OTF (Outer-
Transition-First).

For a state that does not explicitly specify this prop-
erty, it inherits this property from its parent state.
However, it may always override this property by ex-
plicitly assign a value to this property.

The transition priority solves conflicts between tran-
sitions, caused by multiple transitions in a single or-
thogonal component competing for the same event.

� Macros. Designers may specify macros for their mod-
els. In the description of the models, they may use the
names of those macros to literally represent their val-
ues.

Macros can be redefined by the importing model
when it imports a submodel into its importation state.
On the one hand, this mechanism increases reusabil-
ity, since the importing model can then fine-tune the
behavior of the submodel; on the other hand, the mod-
ularity of the submodel is protected, because the im-
porting model may not change its behavior in any
other way.

� Ports and connections between ports. DEVS-like
ports and connections [6] [7] [8] are added as yet
another extension. Designers may connect multiple
DCharts models via well-defined ports. Those mod-
els influence each other by sending messages via the
established connections.

For a more detailed description on the syntax and se-
mantics of DCharts, the readers are referred to [2], the mas-
ter’s thesis that originally introduces DCharts.

2.2 AToM
�

, a visual modeling environment

AToM
�

is a visual environment for modeling and meta-
modeling. It is created by Prof. Hans Vangheluwe in the
MSDL (Modeling, Simulation and Design Lab) of McGill
University. It allows its users to graphically design meta-
models (the models of formalisms). By loading a meta-
model in it, the AToM

�

environment is adjusted according
to the allowed entities of the formalism. The users can then
design models in that formalism with a visual environment
dedicated to it.

A DCharts meta-model for AToM
�

is used here. It is
a model of the ER (Entity-Relationship) formalism in its
own right. When this DCharts meta-model is loaded, but-
tons for various DCharts entities appear and users can then
design DCharts models in AToM

�

.

2.3 The TL model in DCharts

Figure 2 shows the main component of the TL system,
designed in AToM

�

: the TrafficLight component. It is a

ON

NORMAL

FLASHING

RED

GREEN

YELLOW

RED_WAITGREEN_SOON

YELLOW_ON

YELLOW_OFF

OFF

DEAD

H *

AFTER(6)

CROSSWALK

AFTER(5)

AFTER(2)

AFTER(2)

AFTER(0.5)

ON−OFF

ON−OFF

POLICEPOLICE

QUIT

AFTER(0.5)

Figure 2: The TrafficLight component of the TL system

hierarchical DCharts model. It is also a statecharts model,
since it does not use DCharts extensions. There are three
top-level states: ON, OFF and DEAD. The TrafficLight is
functional when it is in the ON state. When the policeman
turns it off (by sending ON-OFF event to it), it goes to the
OFF state. When the simulation/execution ends, the QUIT
event is received and the model goes to the DEAD state. The
RED, GREEN and YELLOW substates of the model represents
the three possible colors. The RED state has two substates:
RED WAIT and GREEN SOON. When the model is in RED, it
stays in RED WAIT for at most 6 seconds. The pedestrian
may send the CROSSWALK event during that period to im-
mediately change the model to the GREEN SOON state. If
no CROSSWALK event is received, the model changes to the
GREEN SOON automatically after 6 seconds (with an AFTER
event, which schedules a transition after that period).

At any time, the policeman may pause the traffic light
by sending a POLICE event. The model then goes to the
FLASHING state, and the light flashes with an interval of
0.5 second. The model goes back to its default state with a
second POLICE event.

The policeman may also turn off the light with an
ON-OFF event. When this event is received the second time,
the model returns to its previous state, which is recorded in
a deep history.

The complete behavior of the traffic light is modeled
in this component. When it is simulated or executed, it



autonomously changes colors. It also reacts to events such
as CROSSWALK, POLICE and ON-OFF. These events are not
generated by this component itself. They are input by the
user from the simulation environment (such as SVM) or
execution environment (such as the code synthesized by
SCC). In those cases, the user acts as the pedestrian and
the policeman.

u1

u2

u3 u4

u5

u6

IDLE

PRESSED

Policeman

Pedestrian

AFTER(20)/POLICE

AFTER(20)/ON−OFF

AFTER(5)/POLICE

AFTER(1)/ON−OFF

AFTER(3)/POLICE

AFTER(10)

AFTER(5)/CROSSWALK

[TrafficLight in ON.NORMAL.GREEN]

Figure 3: The police and pedestrian components

The designer may also explicitly model the pedestrian
and the policeman in other components. Those compo-
nents are orthogonal to the TrafficLight component, and
they have concurrent behavior. The pedestrian component
then periodically generates the CROSSWALK event, and the
policeman component periodically generates the POLICE
event and the ON-OFF event. These components explicitly
model the experiment environment for the TL system.

Figure 3 shows one possible design of the Pedestrian
orthogonal component and the Policeman orthogonal
component.

� The Pedestrian is initially in its default state IDLE.
It signals a CROSSWALK event after 5 seconds, and
waits until the traffic light turns GREEN. The guard
[TrafficLight in ON.NORMAL.GREEN] here tests
this condition repeatedly.

� The Policeman is initially in default state u1. It sig-
nals a POLICE event after 20 seconds. This makes
the traffic light flash. After another 20 seconds, an

ON-OFF event is produced and the traffic light is turned
OFF. The second POLICE event is then ignored since
the traffic light is OFF. After that, the ON-OFF event
sent with the transition from u4 to u5 turns the traffic
light ON again. It then goes to its deep history, and it
continues flashing. The third POLICE event after that
resumes the functioning of the traffic light. It goes
back to its default state RED.

With this simple but practical example, we focus on the
following important points:

� The TrafficLight component demonstrates the use
of several DCharts/statecharts features, such as state
hierarchy, deep history and the AFTER special event.

� The TrafficLight component is at the same time
autonomous and reactive. When it is treated as a
stand-alone model, it accepts input from the simu-
lation/execution environment. When it is used as a
component in a larger model (by means of DCharts
importation), it communicates with other parts of the
same model by means of event broadcast.

� The Pedestrian component and the Policeman
component explicitly model an experiment environ-
ment for the TL system. Although the traffic light
itself is the part that we actually want to build, these
two extra components help to test the system. If the
behavior of these components is made very similar to
the actual behavior of a pedestrian and a policeman,
we then know whether the traffic light is working well
only by means of simulations, without really putting
it into practical use.

3 Simulation with SVM

After designing the model in AToM
�

, the designer can
then simulate it and obtain results from simulations. Simu-
lations can be done in AToM

�

or separately with the SVM
simulator.

3.1 SVM, a DCharts simulator

SVM [9] is a simulator that supports the complete
DCharts syntax and semantics, a superset of the statecharts
syntax and semantics. It accepts DCharts model descrip-
tions as textual input, and outputs the simulation results. It
has multiple default interfaces, including a graphical inter-
face and a plain-text interface, from which the users inter-
act with the models and the simulation environment.2 The
users may debug the model by looking into the internal

2Models may also define specific interfaces, which are different from
the default interfaces internally provided by SVM.



data structures of SVM. In the debug mode, they may also
modify those data structures with Python scripts.

SVM can be used as a plugin to enable the simulation
in AToM

�

. The current states and enabled transitions are
highlighted during a simulation. It can also be invoked
from the command-line, with the file name of a model de-
scription given as a parameter.

3.2 Simulation trace of the TL model

The TrafficLight component is defined in text
file TrafficLight.des, and the Pedestrian compo-
nent and the Policeman component are defined in
TLExperiment.des. The former model description is
also imported into the latter one to create a third or-
thogonal component. When we start a simulation with
TrafficLight.des, we can only see the traffic light.
From the SVM interface we may input events to interrupt
its autonomous behavior. Such events include CROSSWALK,
POLICE and ON-OFF. When we start a simulation with
TLExperiment.des, all the three components in the ex-
periment environment are created and they interact with
each other by sending events.

To obtain textual simulation traces, a series of DUMP
statements are added to the model. Those statements have
no effect on the model behavior, but they print out useful
information for verification and analysis purpose. For ex-
ample, the following is one possible output trace obtained
from a single simulation:

(05.00) Pedestrian: CROSSWALK sent
(05.01) TrafficLight: CROSSWALK received
(07.01) TrafficLight: turn green
(07.02) Pedestrian: crossing the intersection
(12.01) TrafficLight: turn yellow
(12.02) Pedestrian: CROSSWALK sent
(14.01) TrafficLight: turn red
(20.00) Policeman: POLICE sent
(20.01) TrafficLight: start flashing
(40.01) Policeman: ON-OFF sent
(40.02) TrafficLight: turn OFF
(45.04) Policeman: POLICE sent
(46.04) Policeman: ON-OFF sent
(46.05) TrafficLight: turn ON
(49.11) Policeman: POLICE sent
(49.16) TrafficLight: stop flashing
(57.24) TrafficLight: turn green
(57.25) Pedestrian: crossing the intersection
(62.25) TrafficLight: turn yellow
(62.26) Pedestrian: CROSSWALK sent
(64.26) TrafficLight: turn red
(72.27) TrafficLight: turn green
(72.27) Pedestrian: crossing the intersection
(77.27) TrafficLight: turn yellow
(77.28) Pedestrian: CROSSWALK sent
(79.12) Policeman: POLICE sent
(79.13) TrafficLight: start flashing
(99.13) Policeman: ON-OFF sent

(99.14) TrafficLight: turn OFF

This output trace consists of a sequence of messages,
each of which conforms to format “(time) sender:
body”. time is a float number representing the time when
the message is generated3; sender is the name of the com-
ponent that sends the message; and body is the message
body.

This output trace gives us information on the model
behavior. One can see from the trace that about 5 sec-
onds after startup (when the traffic light is red), the pedes-
trian sends a CROSSWALK event. As expected, the light
turns green after 2 seconds, and the pedestrian immediately
crosses the intersection. 5 seconds later, the light turns yel-
low, and at almost the same time but later, the pedestrian
sends CROSSWALK again. This event is ignored since no
transition from the YELLOW state of the TrafficLight re-
sponds to this event. Then the light turns red as expected.
The policeman pauses the light at time 20. The light starts
flashing until another POLICE event is received at time 40.
Etc..

The model tester should remember that the pedestrian
is still waiting for the light, because, unfortunately, he/she
sends the CROSSWALK event right after the light turns yel-
low. That event is thus ignored. The tester should then
suggest the designer to improve the model in two pos-
sible ways: either the TrafficLight responds to the
CROSSWALK event while it is in the YELLOW state, or the
pedestrian is allowed to cross the intersection while the
light is yellow (though dangerous).

4 Code synthesis with SCC and code reuse

After the model has passed a set of tests by means of
simulations, the designer becomes confident enough of the
model. He/She may then synthesize code in a target lan-
guage, and release the executable code.

4.1 SCC, a code synthesizer for DCharts

SCC is able to synthesize executable code from tex-
tual DCharts model descriptions. It is invoked from the
command-line with the file name of a model description
as a parameter. The user may choose from one of the sup-
ported target languages, such as Python, C++, Java and C#.
The code has exactly the same behavior as the DCharts
model in simulations. It also has a simple textual interface.

If an interpreted language (such as Python) is chosen,
the user can execute the code immediately. Otherwise, the
user needs to compile the code with a compiler for the tar-
get language to obtain the binary.

3Because SVM is a real-time simulator, its time accuracy highly de-
pends on the operating system and is in many cases not exact. Virtual-
time simulations are also possible with an extra Clock component, as
discussed in [2].



Figure 4: The traffic light application

It is possible to incorporate the code in a larger (and
possibly hand-written) application. The code reuse of the
TrafficLight component is an example discussed below.

4.2 Code synthesis and code reuse of the TL
model

The designer may synthesize code with SCC for the
whole TL system, which includes the three components:
TrafficLight, Pedestrian and Policeman. This code
has the same behavior as the model simulation, and it pro-
duces traces similar to the simulation trace shown above.

However, the user may only want the code for the
TrafficLight component only. He/She can then reuse
this code in a practical application, which reacts to real
policeman and real pedestrian. It is convenient to synthe-
size code for the TrafficLight component only, because
in the design of the system, the model is separated into
two parts: TrafficLight.des and TLExperiment.des.
TrafficLight.des contains the TrafficLight compo-
nent, and it is imported into the latter file. The designer
now synthesizes code from TrafficLight.des instead of
TLExperiment.des.

When code for the TrafficLight component is ob-
tained, it can thus be reused in a larger application. The
application accesses methods of the model class through
a well-defined interface. An example of such an applica-
tion is shown in Figure 4. In this case, a GUI is defined in
Python. It imports the Python code synthesized from the
TrafficLight component, and uses that part of code to
maintain the current state and react to external stimuli.

5 Conclusion

Modeling and simulation based design is studied in this
article with a concrete example of the TL system. Three
steps in this highly automatic development process are em-
phasized: model design, simulation and code synthesis.

DCharts, a variant of David Harel’s statecharts with ex-
tensions, are introduced and used to model the example
system. Simulation of the DCharts model is supported by
SVM. The simulation traces produced by multiple simula-

tions reveal potential problems in the model, and also pro-
vide information for the analysis of a performance metrics.
When thoroughly tested, a useful part of the model (ex-
cluding the components of the experiment environment) is
transformed into executable code with SCC. The code can
then be reused in user applications.

Compared to traditional software programming, this de-
velopment process reduces human labor and increases pro-
ductivity, reliability and reusability.

References

[1] Thomas Huining Feng and Hans Vangheluwe. Case
study: Consistency problems in a UML model of a
chat room. In Sixth International Conference on the
Unified Modelling Language (UML 2003), Workshop
on Consistency Problems in UML-based Software De-
velopment II, October 2003. San Francisco, USA.

[2] Thomas Huining Feng. DCharts, a formalism for mod-
eling and simulation based design of reactive software
systems. Master’s thesis, School of Computer Science,
McGill University, Montréal, Canada, May 2004.

[3] David Harel. Statecharts: a visual formalism for com-
plex systems. Science of Computer Programming,
8(3):231–274, June 1987.

[4] David Harel and Amnon Naamad. The STATEMATE
semantics of statecharts. ACM Transactions on Soft-
ware Engineering and Methodology, 5(4):293–333,
1996.

[5] Thomas Feng. An extended semantics for a Statechart
Virtual Machine. In Summer Computer Simulation
Conference. Student Workshop, pages S147 – S166,
July 2003. Montréal, Canada.

[6] Bernard P. Zeigler. Multifacetted modelling and dis-
crete event simulation. Academic Press Professional,
Inc., 1984.

[7] Bernard P. Zeigler. Theory of Modelling and Simula-
tion. Krieger Publishing Co., Inc., 1984.

[8] Bernard P. Zeigler and Sankait Vahie. DEVS formal-
ism and methodology: Unity of conception/diversity
of application. In Proceedings of the 1993 Winter Sim-
ulation Conference, pages 573–579, 1993.

[9] Thomas Huining Feng. Statechart Virtual Ma-
chine (SVM), 2003. MSDL, McGill Univer-
sity, http://msdl.cs.mcgill.ca/people/tfeng/
?research=svm.


