
Toward an Effective Execution Policy for
Distributed Real-Time Embedded Systems

Thomas Huining Feng, Edward A. Lee, Hiren D. Patel, and Jia Zou
Center for Hybrid and Embedded Software Systems, EECS

University of California, Berkeley
Berkeley, CA 94720, USA

{tfeng,eal,hiren,jiazou}@eecs.berkeley.edu

Abstract—Zhao, Liu, and Lee have proposed using a discrete-
event (DE) model of computation as a programming model for
distributed real-time embedded systems. The advantage of using
DE is that it provides a semantic foundation that is simple,
time-aware, deterministic and natural as a specification language
for many applications. This programming model is based on a
carefully chosen relationship between DE’s model time and real
time (physical time). We define here a criterion that preserves
conservative execution (thus not requiring backtracking) while
allowing for concurrent and distributed execution. The classic
Chandy and Misra technique is one execution policy that satisfies
the criterion, but the criterion explicitly allows many other
alternatives. We discuss alternatives that offer more concurrency
than Chandy and Misra and that exploit time synchronization
to eliminate the need for null messages.

I. INTRODUCTION

Current programming practices for distributed real-time em-
bedded systems often employ commercial-off-the-shelf real-
time operating systems (RTOS) and real-time object request
brokers as utilities for implementing the system. Programmers
also use languages such as C with concurrency expressed
by threads. RTOSs and threads however, provide only weak
guarantees that the system will meet real-time constraints.
They also do not guarantee that the behavior of the system is
deterministic. A consequence is that the only way to achieve
confidence in the implementation is through extensive testing.
This validates that the functionality and real-time requirements
of the system are met for the tested scenarios. However this
technique is inherently flawed, because no assurance can be
given about the behavior of the entire system. We identify
the source of the problem for such techniques as the lack
of a timed semantic foundation combined with the inherent
nondeterminism in threads [1].

These problems can be addressed by using a distributed
discrete-event (DE) model of computation (MoC) [2]. Though
normally used for simulation (of hardware, networks, and
systems of systems, for example), by carefully binding real

This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which receives support from
the National Science Foundation (NSF awards #0720882 (CSR-EHS: PRET),
#0647591 (CSR-SGER), and #0720841 (CSR-CPS)), the U. S. Army Research
Office (ARO #W911NF-07-2-0019), the U. S. Air Force Office of Scientific
Research (MURI #FA9550-06-0312 and AF-TRUST #FA9550-06-1-0244),
the Air Force Research Lab (AFRL), the State of California Micro Program,
and the following companies: Agilent, Bosch, DGIST, National Instruments,
and Toyota.

time with model time at sensors, actuators, and network inter-
faces, DE can be used for distributed embedded systems [3].
The advantage of using DE as a semantic foundation is
that it is simple, time-aware, deterministic, and natural as a
specification language for many applications.

Distributed DE simulation is an old topic [2]. The focus
has been on accelerating simulation by exploiting parallel
computing resources. A brute-force technique for distributed
DE execution uses a single global event queue that sorts
events by time stamp. This technique, however, is only suitable
for extremely coarse grained computations, and it provides
a vulnerable single point of failure. For these reasons, the
community has developed distributed schedulers that can react
to time-stamped events concurrently. So-called “conservative”
techniques process time-stamped events only when it is known
to be safe to do so [4], [5]. It is safe to process a time-
stamped event if we can be sure that at no time later in
the execution will an event with an earlier time stamp appear
that should have been processed first. So-called “optimistic”
techniques [6] speculatively process events even when there is
no such assurance, and roll back if necessary. For distributed
embedded systems, the potential for roll back is limited by
actuators (which cannot be rolled back once they have had an
effect on the physical world) [7].

Established conservative techniques however, also prove
inadequate. In the classic Chandy and Misra technique [4],
[5], each compute platform in a distributed simulator sends
messages even when there are no events to convey in order to
provide lower bounds on the time stamps of future messages.
This technique carries an unacceptably high price in our
context. In particular, messages need to be frequent enough to
prevent violating real-time constraints due to waiting for such
messages. Messages that only carry time stamp information
and no data are called “null messages.” These messages
increase networking overhead and also reduce the available
precision of real-time constraints. Moreover, the technique is
not robust; failure of single component results in no more
such messages, thus blocking progress in other components.
Our work is related to several efforts to reduce the number
of null messages, such as [8], but makes much heavier use of
static analysis.

The key idea of Zhao, Liu and Lee in [3] is to leverage static
analysis of DE models to achieve distributed DE scheduling

that is conservative but does not require null messages. The
static analysis enables independent events to be processed out
of time stamp order. For events where there are dependencies,
the technique goes a step further by requiring clocks on the
distributed computational platforms to be synchronized with
bounded error. In this case, the mere passage of time obviates
the need for null messages.

By extending the work of [3] we are moving toward defining
a programming model that 1) builds on top of a strong timed
semantic foundation, 2) maximizes concurrency of the imple-
mentation, 3) provides deterministic schedulability analysis,
and 4) eases specification of real-time constraints. We call the
programming model PTIDES (pronounced “tides,” where the
“P” is silent, as in “Ptolemy”), an acronym for programming
temporally integrated distributed embedded systems. In this
work-in-progress paper however, we only elaborate on the
carefully chosen relationship between model time and real
time, and then present our formulation of a general execution
strategy for a PTIDES specification.

II. MODEL TIME AND PHYSICAL TIME

In our DE MoC, actors are concurrent components with
input and output ports. The input ports receive time-stamped
messages from other actors, and the output ports send time-
stamped messages to other actors. Actors react to input
messages by “firing,” by which we mean performing a finite
computation and possibly sending output messages. An actor
may also send a time-stamped message to itself, effectively
requesting a future firing.

The “time” in time stamps is model time, not physical time.
DE semantics is agnostic about when in physical time time-
stamped events are processed. All that matters is that each
actor process input events in time-stamp order. That is, if it
fires in response to an input event with time stamp t, it should
not later fire in response to an input event with time stamp
less than t.

The semantics of DE models is studied in [9], [10], [11],
[12]. In particular, the structure of model time is important
for dealing correctly with simultaneous events and feedback
systems. For the purposes of this paper, we only care that
there are policies for dealing predictably with multiple events
with identical time stamps. To be concrete, we will assume
that time stamps are elements of the set R+ ∪ {∞}. In full
generality, however, our techniques work for any set of time
stamps that is totally ordered, has a top and a bottom, and has
a closed addition operator.

Since we are focused on distributed embedded systems
rather than distributed simulation, some of the actors are
wrappers for sensors and actuators. Sensors and actuators
interact with the physical world, and we can assume that in the
physical world, there is also a notion of time. To distinguish it
from model time, we refer to it as physical time or real time.
Here, we assume a classical Newtonian notion of physical
time, and assume that each compute platform in a distributed
system maintains a clock that measures the passage of physical
time. These clocks are not perfect, so each platform has a

distinct local notion of physical time. We assume further that
we can find a bound on the discrepancies between clocks on
different platforms. That is, at any global instant, any two
clocks in the system agree on the notion of physical time up
to some bounded error.

Synchronized clocks turn out to be quite practical [13]. We
have had available for some time generic clock synchroniza-
tion protocols like NTP [14]. Recently, however, techniques
have been developed that deliver astonishing precision, such
as IEEE 1588 [15]. Hardware interfaces for Ethernet have
recently become available that advertise a precision of 8ns over
a local area network. Such precise clock synchronization offers
truly game-changing opportunities for distributed embedded
software.

We assume that model time and physical time are disjoint,
but that they can be compared. That is, we assume that model
time is in fact a representation of physical time, even though
time-stamped events can occur at arbitrary physical times. In
our DE models, an actor that wraps a sensor, however, cannot
produce time-stamped events at arbitrary times. In particular,
it will produce a time-stamped output only after physical time
(the local notion of physical time) equals or exceeds the value
of the time stamp. That is, the time stamp represents the
physical time at which the sensor reading is taken, and hence
it cannot appear at a physical time earlier than the value of
the time stamp.

An actor that wraps an actuator has a complementary
constraint. A time-stamped input to such an actor will be
interpreted as a command to produce a physical effect at
(local) physical time equal to the time stamp. Consequently,
the model-time time stamp is a physical-time deadline for
delivery of an event to an actuator.

At actors that are neither sensors or actuators, there is no
relationship between physical and model time. At these actors,
input events must be processed in model-time order, but such
processing can occur at any physical time (earlier or later than
the time stamp).

III. THE PTIDES EXECUTION STRATEGY

Following [3], we capture the information of minimum
model-time delay with relevant dependency [3]. In our formal
representation of actor-oriented models, a model consists of a
set A of actors. Any actor α ∈ A has a set of input ports Iα
and a set of output ports Oα. Without loss of generality, we
assume Iα and Oα to be disjoint. We also assume that any
local state maintained by the actor appears at an output port,
so we do not need to address it explicitly. We further assume
that ports are interconnected by a fixed, static network, where
each input port is connected to at most one output port. This
will ensure that all data dependencies are relations between
ports. The set of all input ports is I =

⋃
α∈A Iα, the set of

all output ports is O =
⋃
α∈AOα, and the set of all ports is

P = I ∪O.
The minimum delay (in model time) is defined as function

δ : P ×P → R+ ∪{∞}, where R+ is the set of non-negative
real numbers. For p1, p2 ∈ P , δ(p1, p2) is the minimum

ε1

ε3

ε5

ε4

{ε1, ε2, ε3, ε4}

ε6

o1

o3

o4

o5

o6

o7

o8

ε2

o2

C

A

B

D

E1

3

5

4

i1

i2

i3

i4

i6

i7

i5

o1

o5

i1

i

o6

i6

δ(i1,i8) = min{δ(i1,o1) + δ(i5,o5),

 δ(i1,o1)+δ(i6,o6)}

Fig. 1. Example with Minimum Delay, Relevant Dependency and Cuts

difference between the model time stamp of any event e1 at p1

and that of any event e2 at p2 that totally or partially depends
on e1. Intuitively, this number represents the delay (in model
time, not physical time) that it takes for e1 at p1 to influence
any event at p2. If no event at p2 depends on the events at p1,
then we define δ(p1, p2) =∞.

We assume that for every actor α, δ(pi, pj) is known for all
pi ∈ Iα and pj ∈ Oα. This information constitutes an interface
definition for the actor [16]. To compose these interfaces,
we use a min-plus algebra [17] to compute δ for any pair
of ports based on [3]. The min-plus algebra aggregates these
dependencies over multiple paths between ports.

We define a path from port p1 to pn to be a sequence of
ports [p1, p2, · · · , pn], where for any j (1 ≤ j < n), either pj
is directly connected to pj+1, or pj ∈ Iα and pj+1 ∈ Oα for
some actor α and δ(pj , pj+1) <∞. A subpath is a sequence
of consecutive ports in a path. For any pair of ports p1, pn, the
minimum delay δ(p1, pn) is the minimum of the total delays
on all the paths from p1 to pn.

An example of calculating the minimum delay is provided
in Figure 1. The input ports are labeled i1 through i8 and
the output ports are labeled o1 through o8. The actors are
represented by rectangles. A triangle pointing into an actor
denotes an input port. (i8 is a multi-port denoted by a hollow
triangle, which accepts multiple input connections. It can be
represented as multiple separate ports in our formulation.) The
minimum delay between i1 and i8, δ(i1, i8), can be computed
by min

{
δ(i1, o1) + δ(i5, o5), δ(i1, o1) + δ(i6, o6)

}
. (Direct

connections, such as the one between o1 and i5, do not incur
any delay in model time.)

An actor may have an output port at which events never
depend on events at some of its input ports. This leads us
to partition the set of input ports I into equivalence classes
E = {E1, E2, · · · , Ek} ⊆ 2I . We first define relation ∼ such
that for any two ports i1 and i2, i1 ∼ i2 if and only if they
are both in Iα for some actor α and there exists an output
port o ∈ Oα such that δ(i1, o) < ∞ and δ(i2, o) < ∞. An
equivalence class is then a transitive closure of the ∼ relation.
Intuitively, if i1 and i2 are in an equivalence class, then 1)
they belong to the same actor, and 2) the events received at

them directly or indirectly influence the output signal of an
output port of that actor. This means that these events must be
processed in time stamp order. If i1 and i2 are not in the same
equivalence class, then the input events at i1 can be processed
independently of those at i2, and vice versa.

We now define relevant dependency [3] to be function d :
E× E→ R+ ∪ {∞}. For Ej , Ek ∈ E,

d(Ej , Ek) = min
im∈Ej ,in∈Ek

{
δ(im, in)

}
As an example, in Figure 1, E1 through E6 are equiva-

lence classes. The relevant dependency between E4 and E6
is min

{
δ(i4, i8), δ(i5, i8)

}
= min

{
δ(i4, o5), δ(i5, o5)

}
.

The relevant dependency function is pre-computed in a
static analysis before execution. Based on this information, we
can execute a DE model according to the PTIDES execution
strategy, which we discuss in this section.

A set CE ⊆ E is called a dependency cut for equivalence
class E [7] if it is a minimal set of equivalence classes that
satisfies the following condition.

For any input port i ∈ E and any path ρ to i, there exist
E ′ ∈ CE , input port i′ ∈ E ′ and a path ρ′ from i′ to i,
such that either ρ is a subpath of ρ′ or ρ′ is a subpath
of ρ.

Intuitively, a dependency cut for E is a “complete” set of
equivalence classes on which E depends. Completeness in this
case means that for each port in E , all ports it depends on
will be accounted for in CE , either directly by being included
or indirectly by having either upstream or downstream ports
included. Again using Figure 1 as an example, the dashed
curve depicts one possible dependency cut for E6, namely
CE6 = {E1, E2, E3, E4}. Note that an equivalence class E can
have many distinct dependency cuts. The dependency cut is not
unique. Note further that {E} is always a (trivial) dependency
cut for E .

A dependency cut can be used to determine when an actor
can fire. Specifically, given a dependency cut CE , the actor
α to which the ports in E belong determines whether it can
process input events received at the ports in E with model time
stamps less than or equal to t using the following strategy [7]:

If for any E ′ ∈ CE , α has received all events at the
ports in E that depend on events at the ports in E ′ with
model times smaller than t − d(E ′, E), then it can fire
and process the input event received at a port in E with
smallest model time (among all the available events at
the ports in E) that is less than or equal to t.

This principle, of course, can be satisfied by a classical DE
scheduler, which uses a global event queue to sort events
by time stamp. In this case, the oldest event (with the least
time stamp) can always be processed1. However, this principle
relaxes the policy considerably, clarifying that we only need
to know whether an event is “oldest” among the events that

1This assumes, of course, that all actors are causal, so events that are
produced in reaction to processing an event always have a time stamp at
least as great as that of the processed event.

can appear in a dependency cut. We do not need to know that
it is globally oldest.

The classic distributed DE execution strategy of Chandy
and Misra [4], [5] uses multiple event queues, one on each
execution platform. The technique is equivalent to defining the
dependency cut to include the ports at the boundaries between
platforms. It then simply assumes that all events with time
stamps up to that of the most recently received event have been
seen. This technique requires messages to be received in order
to make progress, hence the requirement for null messages.

The technique of Zhao, Liu, and Lee [3] augments the
Chandy and Misra model with an assumption that real-time
clocks on the distributed platforms are synchronized up to
some bounded error. It further imposes relationships between
real time and model time at sensors and actuators. It then
uses relevant dependency analysis to determine at any given
real time that all events at the boundary ports have been seen
with time stamps up real time minus a statically calculated
offset.

An obvious extension would combine these two techniques.
Non-real-time portions of a DE model may use a technique
like Chandy and Misra while real-time portions use a tech-
nique like Zhao, Liu, and Lee. The above principle allows
for freely intermixing these. If the non-real-time portions can
be shown to be sufficiently “ahead of time,” then the use of
Chandy and Misra would not compromise the ability to meet
real-time constraints.

More interestingly, the above principle allows for other
choices of dependency cuts. Putting a dependency cut on the
boundary between platforms imposes a constraint that either
events traversing that boundary have real-time constraints or
that null messages are used. The above principle, however,
allows choices other than at the boundaries.

Another possibility is to offer system designers explicit
control over the relationship between model time and real time
at the platform boundaries. For example, a NetworkInterface
actor might be defined to have input ports like those of
an actuator, which impose a real-time constraint on events
delivered to those ports. Specifically, we require that events
delivered to the network interface with time stamp t be
delivered at physical time less than or equal to t. If we further
assume a bounded network delay Ndelay for a message to
be sent across the network, then the receiving platform is
guaranteed to receive those events at real time no later than
t+Ndelay. This real time is in terms of the sending platform’s
local clock, but using a time synchronization protocol with
bounded error, such as IEEE 1588 [15], the receiving platform
can decide a lower bound of the time stamps of future input
events by merely checking its own local clock. This allows it
to independently determine whether it can process events that
it has already received. If all network communication links use
network interfaces, then scheduling and schedulability analysis
becomes separable by platform.

Another possible objective could be to choose dependency
cuts to facilitate schedulability analysis. In particular, whether
we have worst-case execution time information or not for

particular actors could affect the choice of dependency cut,
and hence affect how the distributed model is executed.

IV. CONCLUSION

We have defined a correctness principle for conservative ex-
ecution of a distributed discrete-event model that is suitable for
both classical distributed simulation and for distributed real-
time execution. Our correctness principle relies on a choice of
dependency cut. The principle can be applied in a variety of
ways, obtaining previously given techniques as special cases,
but also clarifying that there are many more alternatives. A
remaining challenge is to formulate appropriate optimization
problems that guide the application of the principle, to solve
these optimization problems, and to provide a distributed
execution engine that implements them.

REFERENCES

[1] E. A. Lee, “The problem with threads,” Computer, vol. 39, no. 5, pp.
33–42, 2006.

[2] R. M. Fujimoto, “Parallel discrete event simulation,” Communications
of the ACM, vol. 33, no. 10, pp. 30–53, 1990.

[3] Y. Zhao, J. Liu, and E. A. Lee, “A programming model for time-
synchronized distributed real-time systems,” in Proceedings of the 13th
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS 07), Bellevue, WA, USA, April 2007, pp. 259–268.

[4] K. M. Chandy and J. Misra, “Distributed simulation: A case study in
design and verification of distributed programs,” IEEE Transaction on
Software Engineering, vol. 5, no. 5, 1979.

[5] J. Misra, “Distributed discrete-event simulation,” ACM Computing Sur-
veys, vol. 18, no. 1, pp. 39–65, 1986.

[6] D. Jefferson, “Virtual time,” ACM Transactions on Programming Lan-
guages and Systems, vol. 7, no. 3, pp. 404–425, 1985.

[7] T. H. Feng and E. A. Lee, “Real-time distributed discrete-event execution
with fault tolerance,” in Proceedings of the 14th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS 08), St.
Louis, MO, USA, April 2008.

[8] R. D. Vries, “Reducing null messages in Misra’s distributed discrete
event simulation method,” IEEE Transactions on Software Engineering,
vol. 16, no. 1, pp. 82–91, 1990.

[9] E. A. Lee, “Modeling concurrent real-time processes using discrete
events,” Annals of Software Engineering, vol. 7, pp. 25–45, 1999.

[10] E. A. Lee and H. Zheng, “Leveraging synchronous language principles
for heterogeneous modeling and design of embedded systems,” in
Proceedings of the 7th ACM & IEEE International Conference on
Embedded Software (EMSOFT 07). ACM, October 2007, pp. 114–
123.

[11] X. Liu and E. A. Lee, “CPO semantics of timed interactive actor
networks,” UC Berkeley, Technical Report EECS-2006-67, May 18
2006.

[12] X. Liu, E. Matsikoudis, and E. A. Lee, “Modeling timed concurrent
systems,” in CONCUR 2006 - Concurrency Theory, vol. LNCS 4137.
Bonn, Germany: Springer, August 27-30 2006.

[13] S. Johannessen, “Time synchronization in a local area network,” IEEE
Control Systems Magazine, pp. 61–69, 2004.

[14] D. L. Mills, “A brief history of NTP time: Confessions of an internet
timekeeper,” ACM Computer Communications Review, vol. 33, 2003.

[15] IEEE Instrumentation and Measurement Society, “1588: IEEE standard
for a precision clock synchronization protocol for networked measure-
ment and control systems,” IEEE, Standard Specification, November 8
2002.

[16] L. de Alfaro and T. A. Henzinger, “Interface theories for component-
based design,” in First International Workshop on Embedded Software
(EMSOFT 01), vol. LNCS 2211. Lake Tahoe, CA: Springer-Verlag,
October 2001, pp. 148–165.

[17] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat, Synchronization
and Linearity: An Algebra for Discrete Event Systems. New York:
Wiley, 1992.

