
Execution Strategies for PTIDES, a Programming
Model for Distributed Embedded Systems

Jia Zou, Slobodan Matic, Edward A. Lee, Thomas Huining Feng
Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, USA.

{jiazou, matic, eal, tfeng}@eecs.berkeley.edu

Patricia Derler
Computer Science

University of Salzburg
Salzburg, Austria

Patricia.Derler@cs.uni-salzburg.at

Abstract—We define a family of execution policies for a
programming model called PTIDES (Programming Temporally
Integrated Distributed Embedded Systems). A PTIDES applica-
tion (factory automation, for example) is given as a discrete-
event (DE) model of a distributed real-time system that includes
sensors and actuators. The time stamps of DE events are bound
to physical time at the sensors and actuators, turning the DE
model into an executable specification of the system with explicit
real-time constraints. This paper first defines a general execution
strategy that conforms to the DE semantics, and then specializes
this strategy to give practical, implementable and distributed
policies. Our policies leverage network time synchronization
to eliminate the need for null messages, allow independent
events to be processed out of time stamp order, thus increasing
concurrency and making more models feasible (w.r.t. real-time
constraints), and improve fault isolation in distributed systems.
The policies are given in terms of a safe to process predicate on
events that depends on the time stamp of the events and the local
notion of physical time. In a simple case we show how to statically
check whether program execution satisfies timing constraints.

1

I. INTRODUCTION

This paper considers distributed real-time embedded sys-
tems such as factory automation, large-scale instrumentation
systems, and network supervision and control. Implementa-
tions of such systems consist of networked computers (“plat-
forms”) with sensors and actuators distributed throughout a
network. Orchestrated actions are required from the platforms.

We assume that the application is described using the
PTIDES model introduced in [18]. PTIDES is an acronym
for programming temporally integrated distributed embedded
systems. In PTIDES, rather than defining software tasks as
threads with periods, priorities, and deadlines, as is typically
done for embedded systems, an application is given as a
model in a discrete-event (DE) modeling language. Whereas
classically DE would be used to construct simulations of
such systems, in PTIDES, the DE model is an executable
specification. The objective is to compile this specification

1This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which receives support from
the National Science Foundation (NSF awards #0720882 (CSR-EHS: PRET),
#0647591 (CSR-SGER), and #0720841 (CSR-CPS)), the U. S. Army Research
Office (ARO #W911NF-07-2-0019), the U. S. Air Force Office of Scientific
Research (MURI #FA9550-06-0312), the U. S. Air Force Office of Scientific
Research (AF-TRUST #FA9550-06-1-0244) the Air Force Research Lab
(AFRL), the State of California Micro Program, and the following companies:
Agilent, Bosch, HSBC, Lockheed-Martin, National Instruments, and Toyota.

into a deployable implementation. Thus, PTIDES follows the
principles of model-based design [11].

PTIDES builds on the solid semantic foundation of DE
models [12], which makes it much easier to get determinate
concurrent composition of software components than it is
with threads [13]. Moreover, a key strength of PTIDES is
that its distributed software specifications are explicit about
end-to-end latency between sensors and actuators, making
the behavior of the software in the context of cyber-physical
systems much more repeatable and predictable. This contrasts
with the more indirect mechanisms typically used, where for
example priorities for software tasks (vs. actuator actions) are
empirically determined and experimentally verified.

Distributed DE simulation is an old topic [7]. The focus
has been on accelerating simulation by exploiting parallel
computing resources. A brute-force technique for distributed
DE execution uses a single global event queue that sorts
events by time stamp. This technique, however, is only suitable
for extremely coarse grained computations, and it provides
a vulnerable single point of failure. For these reasons, the
community has developed distributed schedulers that can react
to time-stamped events concurrently. So-called “conservative”
techniques process time-stamped events only when it is known
to be safe to do so [4]. It is safe to process a time-
stamped event if we can be sure that at no time later in
the execution will an event with an earlier time stamp appear
that should have been processed first. So-called “optimistic”
techniques [10] speculatively process events even when there
is no such assurance, and roll back if necessary.

For distributed embedded systems, the potential for roll back
is limited by actuators (which cannot be rolled back once they
have had an effect on the physical world) [6]. Established
conservative techniques, however, also prove inadequate. In
the classic Chandy and Misra technique [4], each compute
platform in a distributed simulator sends messages even when
there are no events to convey in order to provide lower bounds
on the time stamps of future messages. This technique carries
an unacceptably high price in our context. In particular, mes-
sages need to be frequent enough to prevent violating real-time
constraints due to waiting for such messages. Messages that
only carry time stamp information and no data are called “null
messages.” Not only that these messages increase networking
overhead, but the technique is also not robust. Failure of single
component results in no more such messages, thus blocking

progress in other components. Our work is related to several
efforts to reduce the number of null messages, such as [7], but
makes much heavier use of static analysis.

[18] leverages static analysis of DE models to achieve
distributed DE scheduling that is conservative but does not
require null messages. The static analysis enables independent
events to be processed out of time stamp order. For events
where there are dependencies, the technique goes a step further
by requiring clocks on the distributed computational platforms
to be synchronized with bounded error. Recently, techniques
such as IEEE 1588 [8] have been developed to deliver syn-
chronization precision of nanosecond order over a local area
network. This enables truly game-changing opportunities for
distributed embedded software. In our case, the mere passage
of time obviates the need for null messages.

Considerable research activity has been devoted to exploring
similarly high-level MoCs for embedded systems. The classic
SDL model defines embedded systems as asynchronously
communicating processes, and has been extended with mod-
els of time [16]. FunState uses a functional programming
style driven by state machines for imperative logic [17]. The
synchronous languages Esterel, Lustre, Signal, SCADE, and
various dialects of Statecharts have long been explored for
the specification and design of embedded systems [3]. BIP
gives embedded systems as interacting state machines [2].
ForSyDe [9] provides disciplined mixtures of MoCs for em-
bedded systems design. And there are many others. The model
we discuss here is unique (we believe) in building on classical
discrete-event techniques long used for simulation [7].

In this paper, we define a family of execution strategies
for PTIDES that assure compliance with DE semantics and
support distributed scheduling and control (Sec. II). We then
specialize this general strategy to give practical, implementable
distributed policies with varying cost-performance trade-offs
(Sec. III). Here we improve the strategy from [18] using the
concept of a dependency cut. Our policies: 1) leverage network
time synchronization to eliminate the need for null messages,
2) improve fault isolation in distributed systems by making it
impossible for components to block others by failing to send
messages, and 3) allow independent events to be processed out
of time stamp order, thus increasing concurrency and making
more models feasible (w.r.t. real-time constraints). The policies
are given in terms of a safe to process predicate on events that
depends on the time stamp of the events and a local notion of
physical time. We discuss the trade-offs of the policies through
the use of a manuafacturing assembly line example (Sec. IV).
Finally, for a simple setting we provide a feasibility analysis
w.r.t. the real-time constraints of the system (Sec. V).

II. PTIDES EXECUTION STRATEGY

We leverage static dependency information between actors
to develop an execution strategy for discrete-event models.
This strategy is general in the sense that it allows for different
implementations targeting a variety of computer architectures.
An implementation and a time-synchronized architecture mak-
ing use of this strategy are discussed in the next section.

A

B

C

E

D

i1

i2

i3

i4

i5

i6

i7

i8o1

o2

Ci8 = fi1; i2; i3g

o3

o4

o5

o6

o7

o8

±(i1; o7) = min
©
±0(i1; o1) +±0(i5; o5) +±0(i8; o7);

±0(i1; o1) +±0(i6; o6) +±0(i9; o7)
ª

i9

G(i8) = fo7; o8g

Fig. 1. Example with minimum model-time delay and dependency cut.

A. Model Structure and Dependencies

We specify DE models using the actor-oriented ap-
proach [5]. Actors are concurrent components that exchange
time-stamped events via input and output ports. Actors react
to input messages by “firing,” by which we mean performing a
finite computation and possibly sending output messages. The
“time” in time stamps is model time, not wall clock time, which
we also call physical time in this paper. DE semantics requires
that each actor processes input events in time-stamp order.
It does not impose any constraints on the physical time at
which events are processed. In this paper we will assume that
time stamps are non-negative real numbers. However, to fully
support heterogeneous modeling and design the formalism
should be extended with super-dense time [14].

We assume a port to be either an input port or an output
port. This is without loss of generality, because a port that
is an input port and an output port at the same time can be
modeled as two distinct ports. We further assume ports to be
interconnected by a fixed and static network, where at most
one output port is connected to each input port.

A model in our formal representation consists of a set of
actors, represented by A. Any actor α ∈ A has a set of input
ports Iα and a set of output ports Oα. The set of all input ports
is I =

⋃
α∈A Iα. The set of all output ports is O =

⋃
α∈AOα.

The set of all ports is P = I ∪O.
We represent the input-output dependency between ports

with minimum model-time delay, which is computed statically.
It is formulated as a causality interface [19] using min-plus
algebra [1]. We require a function δ0 : P ×P → R+∪{∞} to
be provided a priori, where R+ is the set of non-negative real
numbers. By requiring the return values be non-negative, we
explicitly assume the actors we are dealing with to be causal,
in the sense that their output events are no earlier in model
time than the input events that cause them.

The function δ0 is defined as follows.
1) If p1 is an output port, p2 is an input port, and p1 is

connected to p2, then δ0(p1, p2) = 0.
2) If p1 ∈ Iα and p2 ∈ Oα for some α ∈ A, then δ0(p1, p2)

is provided by the designer of actor α to characterize
the dependency between input port p1 and output port
p2. Alternatively, it may be inferred from a hierarchical
definition of α using the methods of [19]. In either case,
if δ0(p1, p2) = τ0 (where τ0 ∈ R+), the actor guarantees
that an input event at p1 with time stamp τ has no effect
on any event(s) at p2 with time stamp less than τ + τ0.

3) For all other ports p1 and p2, δ0(p1, p2) = ∞.
For example, for a Delay actor with input port p1, output

port p2 and a constant model-time delay τD between them
(τD ≥ 0), δ0(p1, p2) = τD. For a VariableDelay actor, whose
delay can be changed at run-time but is always non-negative,
δ0(p1, p2) = 0. If the events at an input port p1 never affect
those at an output port p2, then δ0(p1, p2) = ∞.

We use the model in Fig. 1 as a running example to
clarify the definitions in this section. In that figure, rectangles
represent actors, while filled triangles pointing into and going
out of actors are inputs and output ports, respectively. The
input ports are labeled i1 through i9 and the output ports are
labeled o1 through o8. A dashed line in an actor represents
predefined non-infinity dependency between the connected
input port and output port. For example, the dashed line
between i1 and o1 in actor A implies that δ0(i1, o1) is statically
known to be a number in R+.

A path from port p1 to pn is a sequence of ports
[p1, p2, · · · , pn] for some n > 0. A subpath is a sequence
of consecutive ports in a path. In Fig. 1, [i1, o1, i5, o5, i8, o7]
is a path, and [i5, o5, i8] is a subpath. We define δP (ρ) for
path ρ = [p1, p2, · · · , pn] as the model-time delay on the path
as follows. If n = 1, then δP (ρ) = 0. Otherwise,

δP (ρ) =
n−1∑
k=1

δ0(pk, pk+1).

To continue with the previous example in Fig. 1,
δP ([i1, o1, i5, o5, i8, o7]) = δ0(i1, o1) + δ0(i5, o5) + δ0(i8, o7),
where we observe that δ0(o1, i5) = δ(o5, i8) = 0.

Now we are ready to define the minimum model-time delay
for arbitrary pairs of ports with function δ : P × P → R+ ∪
{∞}. For any px, py ∈ P , δ(px, py) is defined as follows,

δ(px, py) = min
{
δP (ρ) | ρ is a path from px to py

}
That is, δ(px, py) is the smallest model-time delay on

any path from px to py . Since in this paper model time is
represented with real numbers, we require no cycles with zero
model-time delay. In Fig. 1, there are only two paths from i1
to o7 that may not yield ∞, so the minimum model-time delay
from i1 to o7 is:

δ(i1, o7) =min
{
δP ([i1, o1, i5, o5, i8, o7]),

δP ([i1, o1, i6, o6, i9, o7])
}

=min
{
δ0(i1, o1) + δ0(i5, o5) + δ0(i8, o7),

δ0(i1, o1) + δ0(i6, o6) + δ0(i9, o7)
}
.

The minimum model-time delay function δ can be computed
in a static analysis before execution.

B. General Execution Strategy

In this section, we discuss our execution strategy for dis-
tributed discrete-event systems. It is general enough to serve
as the basis of a variety of concrete execution policies. For
ease of discussion, we make an assumption that, conceptually,
an input queue is maintained for each input port. An actor
removes events from its input queues only when those events

δ
δ

δ
ε

ε
i o

i o
so

Fig. 2. Actor state and causality interface.

are processed, and the generated output events (if any) are de-
livered to the input queues of the receiving ports. Optimization
is possible by employing fewer event queues, as is done in an
implementation described in the next section.

The core of our execution strategy is to decide whether it is
safe to process an input event. We assume statetful actors, i.e.,
the output of event processing depends on the current state of
the actor. For an actor shown on the left side of Fig. 2, let i
be an input and o an output port such that δ0(i, o) = δ (with
δ ∈ R+) and let s be the state of the actor. Thus, if processing
of an event with time stamp τ − δ at input port i resuts in
the event with time stamp τ at output port o we have o(τ) =
fo(i(τ − δ), s(τ − ε)) where fo is the output function for port
o and τ−ε is the time at which state s has been modified last.
To simplify the presentation of event processing in Sec. III-D
we here assume that both output and state computation are
performed in a single step. Thus, we implicitly assume that for
each port o of an actor there exists a state port so and for each
input port i such that δ0(i, o) = δ there is also dependency
between i and so such that δ0(i, so) = δ. This means that the
state will be updated according to so(τ) = fso

(i(τ−δ), so(τ−
ε)) where fso is the state function for state so. Therefore,
whenever in our figures we show an actor similar to the one
shown on left in Fig. 2 we implicitly assume the structure
shown on right in the same figure. This assumption can be
avoided in a more general formalism that requires super-dense
time and fixed-point computation [14]. The issues present in
such a formalism are orthogonal to the details of the execution
strategy which is the focus of this paper, so in the rest of the
paper we assume that the assumption holds.

Consequently, an event at an input port is safe to process
and produce event with time stamp τ at an output port o when
all events at o with time stamps smaller than τ have already
been produced. Consider, for instance, actor D in Fig. 1. Let
time stamps of input events e6 and e7 at input ports i6 and
i7 be τ6 and τ7, respectively, and let τ6 < τ7. The two input
events may result in output events e′6 and e′7 with timestamps
τ6 + δ0(i6, o6) and τ7 + δ0(i7, o7). If τ6 + δ0(i6, o6) > τ7 +
δ0(i7, o7), then we would process event e7 first, because it
produces an event of smaller time stamp at the output. Notice
that this implies all actors produce output events in time stamp
order. Of course, if δ0(i6, o6) = δ0(i7, o7) events at input ports
i6 and i7 will be processed in time stamp order. This analysis
leads us to extend the notion of dependency by considering a
group of output ports that are affected by the same input port.

We define function G : I → 2O to return a group of ports
of the same actor that we need to consider before processing
an event at a given port. For any i ∈ Iα,

G(i) =
{

o ∈ Oα | δ0(i, o) < ∞
}

.

For example, in Fig. 1, G(i8) = {o7, o8}.

A set Ci ⊆ I is called a dependency cut for input port i ∈ I
if it is a minimal set of input ports that satisfies the following
condition.

For any oy ∈ G(i) and any path ρ to oy satisfying
δP (ρ) < ∞, there exist input port ix ∈ Ci and path ρ′

from ix to oy satisfying δP (ρ′) < ∞, such that either ρ
is a subpath of ρ′ or ρ′ is a subpath of ρ.
Intuitively, a dependency cut for i is a “complete” set of

ports on which ports in G(i) depend. Completeness in this
case means that for each port in G(i), all ports it depends on
will be accounted for in Ci, either directly by being included
or indirectly by having either upstream or downstream ports
included. The dependency cut for a given input port is not
unique. Again using Fig. 1 as an example, the dashed curve
depicts one possible dependency cut for i8, namely Ci8 =
{i1, i2, i3}.

We now use the definition of dependency cut to define our
general execution strategy:

Given a dependency cut Ci for input port i of actor α,
an event e at i with time stamp τ is safe to process if
for any ix ∈ Ci and any oy ∈ G(i),

1) ix has received all events with time stamps less
than or equal to τ − δ(ix, oy) + δ0(i, oy), and

2) for any iz ∈ I such that δ(ix, iz) < ∞,
a) if iz ∈ Iα, all events in input queue of iz

have time stamps greater than or equal to
τ − δ0(iz, oy) + δ0(i, oy),

b) if iz /∈ Iα, all events in input queue of iz
have time stamps greater than τ−δ(iz, oy)+
δ0(i, oy)

Recall Iα is the set of input ports for actor α. Intuitively,
these conditions ensure that actor α has received all events that
can possibly invalidate the processing of e. The first condition
ensures that no future events will be received at the ports in
the dependency cut Ci that can possibly affect an output in
G(i) earlier. The second condition ensures that no event at the
ports between any port in Ci and any port in Iα can possibly
affect an output in G(i) earlier. Notice that if δ(iz, oy) = ∞,
then this condition is trivially satisfied.

The above execution strategy is general in the sense that
it describes only a principle that needs to be satisfied for
correctness, while allowing designers to create a spectrum of
concrete implementations based on that principle. It relaxes
the DE execution policy considerably, clarifying that we only
need to know whether an event is “oldest” among the events
that can appear in a dependency cut. We do not need to know
that it is globally oldest. Of course, the choice of dependency
cuts will have a significant effect on how much this relaxes
the scheduling.

The distributed execution policy developed by Chandy and
Misra [4] also satisfies the principle. That policy can be
considered as a special case in which the dependency cut
Ci for input port i ∈ I is always chosen as Iα. Another
policy, which is introduced in [18] and will be elaborated with
improvements in the next section, is also a specialization of
the principle. That policy takes advantage of the synchronized
clocks between distributed platforms.

III. PTIDES IMPLEMENTATION

Since we are focused on distributed embedded systems
rather than distributed simulation, some of the actors are
wrappers for sensors and actuators. Sensors and actuators
interact with the physical world, and we can assume that in
the physical world, there is also a notion of time. An actor that
wraps a sensor or an actuator cannot produce or consume time-
stamp events at arbitrary times. We assume time stamps of
events emerging from sensor actors represent the physical time
at which a physical measurement was taken. We also assume
that the time stamp of an event delivered to an actuator actor
represents the physical time at which we wish the actuator to
take action.

Along with sensors and actuators, we will also impose
timing constraints at network interfaces. A network connection
carries time-stamped events from one compute platform to
another, and we abstract such an interface as an actor with
one input port and one output port. Here, we will assume a
bounded network delay, so that the physical time that elapses
between delivery of such an event to the network interface and
appearance of the event at the output of the network interface
is bounded. We also assume that each compute platform in a
distributed system maintains a clock that measures the passage
of physical time, and any two clocks in the system agree on
the notion of physical time up to some bounded error.

At actors that are neither sensors, actuators or network
interfaces, there is no relationship between physical and model
time. At these actors, output events must be produced in
model-time order, but this production can occur at any physical
time (earlier or later than the time stamp).

During the execution of distributed DE models, time-
stamped events can arrive unpredictably over the network. If
the model includes sensor actors that can produce events at
arbitrary times, then a similar problem occurs. In this section,
we specialize the general execution strategy from Sec. II-B to
handle these situations. We use the notion of real-time ports,
which are ports where time stamps have a particular defined
relationship to physical time.

A. Real-Time Ports

As in Sec. II-B, we assume that each input port maintains
a queue of as-yet unprocessed events. An input port that is a
real-time port has the constraint that at any physical time t,
for each event e in the queue,

τ ≥ t, (1)

where τ is the time stamp of event e. The input ports of
actuator actors and network interface actors are normally such
real-time ports.

This constraint imposes a physical time deadline on delivery
of each event to the queue, because if the event is delivered
at a physical time t > τ , then upon delivery, there will be an
event in the event queue that violates the constraint. Moreover,
this requirement imposes a deadline on the processing of the
event, because if the actor is not fired prior to physical time
t = τ , then the event will remain on the queue past the point
where it satisfies the constraint.

An output port o that is a real-time port has the constraint
that if it produces an event e with time stamp τ at physical
time t, then

τ + do ≥ t (2)

where do ∈ R+ ∪ {∞} is a parameter of the port called
its maximum physical time delay. Here, what we mean by
“producing an event” is delivering it to the input queue of all
destination input ports.

Output ports of sensor and network interface actors are
normally real-time ports. For a sensor, the time stamp of
an output event represents the time at which the reported
measurement was taken. The constraint τ +do ≥ t asserts that
the sensor does such reporting in bounded time, if do < ∞. In
case of sensor real-time output ports, it also holds t ≥ τ , since
sensors can only report about past properties of the physical
environment, not future properties.

A network interface actor abstracts a network connection,
and has a single input port called network input port, a single
output port called network output port, both of which are real-
time ports. In this case, do is a bound on network latency
plus the network synchronization error. We make a special
introduction of this actor here because this is the only actor
that is used for different platforms to communicate between
each other within a distributed system.

Note that Eq. (2) represents a timing assumption on system
inputs, while Eq. (1) represents the timing guarantee on system
outputs. Whether that guarantee can be met in every execution
is the schedulability question, which we address only in a
simple case through our feasibility analysis in Sec. V.

B. Examples
We use the example in Fig. 3 to introduce initial events. First

we look at the Source actor in this example. At each firing of
this actor, it consumes one event and produces two events, one
at each output port. At the start of execution, an initial event is
inserted into the input port of this actor. In figures we indicate
such events with blue dots. Since all actors other than sensors
can only produce events after the consumption of some other
event, these initial events are key to start the execution of the
model. Note that these initial events do not have to bear any
relationship between model time and physical time. Also note
if there exists an actor which spontaneously produces events
without consuming any event, that actor can be modeled by
the Source actor as shown in our example. In addition, if our
model has a loop of actors, we also need at least one initial
event to start it.

To show the selection of a suitable dependency cut, we
consider the same example. Two real-time ports exist in Fig.
3: output port o of the Sensor actor and the input port i of
the Actuator actor. Suppose we have received an event e with
time stamp τ at i2. When is it safe to process e (i.e., to fire the
Computation actor)? Following the general execution policy,
we need to first choose a dependency cut Ci2 . i1, i3 is one
option for the cut. Notice that i1 relates model time to physical
time, and we chose i3 over i2 because an initial event resides
at this port, which indicates it is a “source” of events. With
Ci2 = {i1, i3}, the general execution policy tells us that we
can process the event if i1 and i3 have received all events with

time stamp less than or equal to τ . Assume for the Source
actor δ1 = δ2. Then on i3 this requirement is automatically
true. On i1, because of the constraint (2) in Sec. III-A on o,
the requirement is guaranteed to have happened when physical
time t is greater than τ + do.

Fig. 3. Simple DE model with a sensor and an actuator.

C. Dependency Cut Selection
Motivated by the above examples, we provide an algorithm

for choosing a suitable dependency cut Ci for a given input
port i.

Since the dependency cut specifies how far upstream we
need to look to determine whether an event is safe to process, it
is important to make the cut such that events that occur within
the cut are easily accessible; this simplifies the safe-to-process
analysis. Given that, it makes sense for us to find a dependency
cut within the same platform as i. Further, we observe that if
the dependency cut consists of ports that relate model time
to physical time, then we can completely eliminate the need
for null messages across computing platforms. Thus our goal
is to define the cut at the “boundary” of the platform, where
“boundary” implies we make the cut at ports that communicate
with the outside of the platform, which may be the rest of the
distributed system or the physical environment.

Note here our choice of the cut is determined by the assump-
tion that communication within the platform is economical,
while communication outside of the platform is expensive. But
this may not be true in all cases.

Fig. 4 shows an example of the cut Cin
of port in for

each n ∈ {1, 2, 3} (notice that the cuts for all these ports
are identical). Ports i′1 and i′4 are candidates because they
are input ports connected to real-time output ports, i′5 is a
candidate because it is a real-time input port, while i′2 and i′3
are candidates because initial events are present at the start of
execution at these ports. Now to ensure the cut is minimal,
we see that i′4, i

′
5 can be reached by traversing the graph

from i′3, thus they are removed from the cut. Hence we have
Cin = {i′1, i′2, i′3} for each n ∈ {1, 2, 3}.

Fig. 4. Example: dependency cut for G(in).

Using the above example as motivation, we formally de-
scribe the cut selection procedure using standard graph no-
tation and algorithms. Let us define a directed graph G =

(V,E, W, L) that describes the PTIDES model being exam-
ined, where

V = P,

E = {(v1, v2) | ∀v1, v2 ∈ V. δ0(v1, v2) < ∞
∧ v1 is not a network input port
∧ v2 is not a network output port},

W (v1, v2) = δ0(v1, v2), and

L(v) =

1 if ((v′, v) ∈ E ∧ v′ is real-time output port)

∨ v is a real-time input port
∨ v is an input port with initial events,

0 otherwise.

Here, V is the set of ports of the model; E is the set of
edges; W : E → R+ ∪ {∞} is a weight function that maps
each edge to its minimal model time delay; L : V → {0, 1}
is a labeling function that determines whether each vertex
v ∈ V is a candidate for dependency cut. This graph con-
structs the original model, while disconnecting the edges from
network input ports or towards network output ports. Since
using network interface actors is the only way data could
be communicated across platforms, this in effect removes all
connections across computation platforms. This ensures the
cut always consists of the ports from the same platform as
port group G(i).

We determine a dependency cut Ci for port i in a two-step
algorithm as follows:

1) for each v ∈ V such that L(v) = 1, start from v
and traverse G. If the traversal leads to a vertex
i′ ∈ G(i), add v to Ci.

2) After step 1 is completed, start from each v ∈ Ci

and traverse G. If during this process a vertex v′ is
reached such that v′ ∈ Ci, update Ci by removing
v′ from the cut.

Notice that step 1 of our algorithm ensures the cut is complete.
Step 2 of our algorithm guarantees the cut is minimal, since
the traversal ensures any two vertices belonging to a path will
not be part of the cut at the same time. Also, in the case where
we have more than one candidate for the cut within a cycle,
the above algorithm is not deterministic in specifying which
one among them will become a member of the cut. However,
we do not care which port is chosen through step 2 of the
algorithm, as long as exactly one among them is chosen, and
step 2 ensures exactly that.

Also notice that if our only goal of the cut selection
algorithm is to find the dependency cut, then any graph
traversal algorithm could be used in step 1. However, during
traversal, it is also beneficial for us to obtain the value of
minimum model time delay δ from each member of the cut to
each element of G(i). This value could be obtained by using
a shortest path algorithm as a graph traversal algorithm.

D. Safe-to-Process Analysis

Using the dependency cut obtained by the algorithm in Sec.
III-C, in this subsection we present an instance of the general
execution strategy described in Sec. II-B, i.e., we present

conditions for safe processing of events that obeys the DE
semantics.

We first define the physical-time delay function d : I →
R+ ∪ {−∞} that maps each port p ∈ I as follows:

d(p) =

0 if p is a real-time input port (1),
do if p is a non-real-time input port

connected to a real-time output port (2),
−∞ otherwise (3).

Here do is the maximum physical-time delay specific to the
real-time output port p, as defined in equation (2) of Sec.
III-A (i.e., τ + do ≥ t). Note also that equation (1) in the
same section can be rewritten as τ + 0 ≥ t. Thus, for each
input port p that satisfies condition (1) or (2) of the definition
d(p) given above we have that an event with time stamp τ
is delivered to the input queue of p at physical time t such
that τ + d(p) ≥ t. For all other ports, i.e., for case (3) above,
d(p) = −∞ because no such constraint between physical time
and model time exists.

Assume that the model-time delay function δ and physical-
time delay function d are given and that for each input port
i ∈ I the dependency cut Ci is determined according to
the algorithm from Sec. III-C. In addition assume G(i) is
nonempty. In that case, a procedure for determining safe-
to-process events based on the general execution strategy
presented in Sec. II-B can be given as follows:

Strategy A. An event at input port i ∈ I with time stamp
τ is safe to process when:

1)

τ + max
p∈Ci,o∈G(i)

{d(p)− δ(p, o) + δ0(i, o)},

and
2) for each port p′ ∈ I such that there exists port

p ∈ Ci with δ(p, p′) < ∞, each event in input
queue of p′ has time stamp

a) greater than or equal to
τ + maxo∈G(i){−δ0(p′, o) + δ0(i, o)}
for all o ∈ G(i) such that δ0(p′, o) < ∞,

b) greater than
τ + maxo∈G(i){−δ(p′, o) + δ0(i, o)}
for all o ∈ G(i) such that δ0(p′, o) = ∞.

The conditions 1) and 2) correspond to the conditions 1) and
2) of the general execution strategy respectively. The forms of
the corresponding conditions 2) are similar. As in the general
strategy, condition 2a) checks among events at the ports of
the same actor (δ0(p′, o) < ∞), whereas 2b) checks the rest
(δ0(p′, o) = ∞). However, condition 1) differs because the
intention here is to take advantage of the particular dependency
cut Ci. If d(p) > −∞ for an input port p ∈ I , then constraint
τ + d(p) ≥ t between physical time and model time can be
exploited as explained above. In addition, this condition takes
into account all ports of Ci and G(i), model-time delay δ
between those and model-time delay δ0 between i and ports
of G(i). Thus, after the specified physical time the event can
be safely processed because no other event with smaller time
stamp can be produced at a port in G(i). Note that for each

i ∈ I , given Ci and G(i), the value of maxp∈Ci,o∈G(i){d(p)−
δ(p, o) + δ0(i, o)} can be computed statically.

We next sketch the proof that the strategy presented above
cannot result in a deadlock, i.e., if a platform event queue is
non-empty then after a finite amount of time an event from
the queue will be safe to process. Assume there are n ∈ N
events ek in the queue with time stamps τk and waiting at
input ports ik to be processed to generate events at output
ports ok for k = 1, ..., n. The functions d, δ and δ0 are
bounded, so the condition 1) eventually becomes satisfied for
each event in the queue. Assume that condition 1) is satisifed
for all events in the queue, but no event satisfies condition
2). Let τ ′ = mink=1,...,n{τk + δ(ik, ok)} and let E′ be the
set of events ek for which this minimum is achieved, i.e.,
let E′ = {ek | τk + δ(ik, ok) = τ ′ , k = 1, ..., n}. This
set contains at least two elements, because otherwise its only
element would be safe to process being the unique event that
could result in an event with time stamp τ ′. Moreover, each
element ek1 from E′ is declared unsafe because of another
event ek2 from E′ such that δ(ok2 , ok1) = 0. Since this is
true for every element in E′, there exist n′ ≤ n indices kj

such that δ(okj+1 , okj
) = 0 for j = 1, ..., n′ and kn′+1 =

k1. Consequently, there exists a zero delay loop formed by
ports ok1 , ok2 , ..., okn′ . This contradicts assumptions of our
programming model introduced in Sec. II-A.

Note that strategy A does not assume that events at actor
input ports are received in increasing time-stamp order. In
particular, the network over which platforms communicate can
reorder messages (events), so that events at a network output
port are not received in the time-stamp order. However, if we
assume there is no network reordering, then for each port of
the system the events are received in the time-stamp order
because actors themselves produce events in such an order. If
this is the case, the execution strategy could be made simpler
by considering for each path from the cut Ci only the event
closest to G(i). In particular, for a given path ρp,o from p ∈ Ci

to o ∈ G(i) define: δ′(ρp,o) = min{δ(p′, o) | p′ ∈ I ∩ ρp,o,
input queue of p′ is non− empty},

and let p′(ρp,o) be port p′ for which this minimum is achieved.
If there exists no such p′ let δ′(ρp,o) = ∞. The strategy for
the case with additional assumption on networking is:

Strategy B. An event at input port i ∈ I with time
stamp τ is safe to process if for each path ρp,o from
p ∈ Ci to o ∈ G(i) :
the smallest time stamp in the queue of p′(ρp,o) is
greater than

τ − δ′(ρp,o) + δ0(i, o) for δ′(ρp,o) 6= ∞,

or physical time is greater than

τ + d(p)− δ(p, o) + δ0(i, o) for δ′(ρp,o) = ∞.

Finally, we present another simplification to the strategy
we described above. Here we require an event queue to be
available for each platform to store and sort all events in the
platform. Specifically, all events are sorted by the value of

τ + maxo∈G(i)(δ0(i, o)), where τ is the time stamp of the
event and i its input port. Intuitively, the event queue is sorted
by the model time in which events are produced. Now, in
contrast to earlier strategies, which consider multiple events
for processing, in this implementation, only the first event
in the queue is checked for safety. This greatly simplifies
the execution strategy. In particular, if only the first event
on the queue is considered for processing, there is no need
to check the condition 2) of the general execution strategy
from Sec. II-B because it will always be satisfied. However,
since other events in the queue may be safe to process even
when the first event is not, this approach may result in more
conservative strategy. This depends both on the actor model
and the characteristics of the input event sequences.

The safe-to-process analysis in this case can be simplified
to a time stamp checking against physical time as follows:

Strategy C. An event at input port i ∈ I with time stamp
τ is safe to process when the physical time has exceeded

τ + max
p∈Ci,o∈G(i)

(d(p)− δ(p, o) + δ0(i, o)).

If an event can be processed immediately, it is passed to
the corresponding actor for processing. If no event can be
processed immediately, the physical time at which an event
can be processed can be determined, and a timed interrupt
can be set to occur at that time.

Note that our execution strategy bears some resemblance to
the one presented in [15]. However, the types of synchroniza-
tion needed across platforms in both cases is largely different.
Other than the transmission of data between platforms, [15]
also requires synchronization barriers, which stall execution
until all platforms arrive at such barriers, as well as cross-
platform communication to test events for safe-to-process.
Compared to periodic network synchronization packets that
are required in our approach, we believe more network traffic
will be a result of the execution strategy in [15]. Also, [15]
assumes an upper bound of the difference between model
time on different platforms, while we do not make such an
assumption.

IV. PTIDES STRATEGIES COMPARISON

The goal of this section is to compare the PTIDES strategies
B and C discussed in the last section through a manufacturing
assembly line example. The main difference between these
strategies is that strategy B considers all events for processing,
and assumes events always arrive in time stamp order, while
strategy C only considers the event of smallest time stamp for
processing, and does not assume events arrive in time stamp
order.

Fig. 5 shows an example of a model that could be scheduled
using the above strategies. This example is motivated by
robotic arm control in manufacturing assembly lines, where
robotic arms are programmed to perform certain functionalities
in product construction. In this particular example, two robotic
arms are controlled by Platform2 and Platform3, respectively,
and perform on a single product. Sensors reside in Platform1,
and provide triggers needed for the arms. In this case, SensorA
in Platform1 generates events to tell both robotic arms that a

SensorA
do = .5

Compu
‐tation

Event
Source

Compu
‐tation

Merge

Compu
‐tation

Model
DelayA
δ = 1.5

Actuator

Actuator

Model
DelayB
δ = 1.1

Actuator

Actuator

Model
DelayC
δ = 2.5

Merge

s1

a1 a2

a3

a4

i1

o1

i5

dn= .5

dn= 2

Platform1

Platform2

Platform3

Platform4

Model
DelayD
δ = 2.5

i2

i4

i3

SensorB
do = .5

i6

Network
Interface

Network
Interface

Network
Interface

Network
Interface

Network
Interface

Model
DelayE
δ = .5

Model
DelayF
δ = .5

Network
Interface

Fig. 5. Actor graph for assembly line example.

s1

ta2
a1

0 1 2 3 4 5 6

τ = 0.1

τ = 3.2
τ = 2.1

a4

i5

τ = 2.1

τ = 3
τ = 3.1

τ = 4.6

i3
i4 τ = 3.2

τ = 5.7

τ = 5.6

a3

a4

i2

o1τ = 3

τ = 3.1

τ 4.6

i1

… … … τ = 5.5
τ 5.6

τ = 3

a3
i6 τ = 0.6

Fig. 6. Event trace of a simple PTIDES implementation.

s1

ta2
a1

0 1 2 3 4 5 6

τ = 0.1

τ = 3.2
τ = 2.1

a4

i5

τ = 4.6

i3
i4 τ = 3.2

τ = 5.7

τ = 5.6

τ = 3
τ = 3.1

τ = 2.1

a3

a4

i2

o1τ = 3

τ = 3.1

τ 4.6

i1

τ = 3
… … … τ = 5.5

τ 5.6

a3
i6 τ = 0.6

Fig. 7. Event trace of a more sophisticated PTIDES implementation.

half-completed product has arrived within reach, and sends
these events across the first set of network interfaces. The
arm controlled by Platform2 then computes the exact position
of the product, and performs required actuation when physical
time is exactly equal to model time τ + .5+1.5, where τ is the
time stamp of the event sent by the sensor, and .5 and 1.5 are
the model time delay introduced by ModelDelayE and Mod-
elDelayA actors, respectively. The same event of time stamp τ
is sent to Platform3, where ModelDelayE and ModelDelayC
actors increases the time stamp by .5 and 2.5. Then the event is
sent to a3. The actuator subsequently performs the actuation at
physical time τ+.5+2.5. Back at Platform2, another actuation
happens at physical time τ + .5 + 1.5 + 1.1. While the three
actuators at Platform2 or Platform3 await for physical time to
equal model time to perform actuations, events are also sent
across the set of network interfaces on the right, and to ports
i3, i4 and i5 at Platform4. These events in turn trigger some
actuation at time stamps τ+.5+1.5+2.5, τ+.5+1.5+1.1+2.5,
and τ + .5+2.5+2.5, respectively. This actuation may trigger

a shut down signal in case either of the robotic arms has
failed to perform their functionalities correctly. Also notice
that in Platform3, a separate path exists starting from the
Event Source actor, which sends out periodic events through
o1. The periodic events may implement utilities the arm needs
to perform periodically. Finally, SensorB in Platform1 also
sends events to Platform3, which can model a simple reset
event that resets the position of the robotic arm.

Given this example, we present two event traces to show
differences in execution strategies discussed in the previous
subsections (Fig. 6 and 7). In the figures, the darken ellipses
show differences for different strategies. Here, black arrows
pointing up indicate an event becoming available (an event
inserted into the corresponding input port), and red triangle
pointing down indicate the event starts processing. Purple
triangles pointing up are specific to real-time ports, where they
either indicate an event is produced at a real-time output port,
or an event is consumed for actuation at a real-time input port.
In this scenario, we assume that each platform only has one
processor to process events, thus resource contention exists.
Also, here we assume actuation happens at the exact physical
time that is equal to the time stamps of its input events, and
they do not block the processor while waiting for the physical
time. Finally, we assume it takes zero physical time for the
scheduler to determine whether an event is safe to process.

The event trace in Fig. 7 corresponds to the strategy given
in B, while the one in Fig. 6 corresponds to the strategy C.
The ellipse on the left indicates a difference in event trace due
to the fact that the simple strategy C only considers the event
of smallest time stamp in the queue for processing, while the
strategy B considers all events for processing.

For the case shown in the ellipse on the left, port i6 first
receives an event of time stamp 0.6, which according to
strategy C, is safe to process at physical time 0.6 + .5 = 1.1,
where .5 is the do of the network interface. At the same time,
an event of time stamp 3 is present at port i2, which is safe-
to-process at physical time 3 + .5 − 2.5 = 1. In Fig. 6 the
event at i6 is first processed at physical time 1.1 because it
generates the output of smaller time stamp. However in Fig. 7
the event at port i2 is first processed at physical time 1, since
it has a smaller safe-to-process time. This results in different
processing times for event arriving at a3. Thus, if model time
delay of the ModelDelayC actor is descreased from 2.5 to 1.7,
then for this event trace, actuator at Platform3 would miss
its deadline if scheduled by the strategy C, but not for the
more sophisticated B. Also notice this also results in a large
difference between when events are received at Platform4.

For the case shown in the ellipses on the right, i3 first
receives an event of time stamp 2.1, which is safe to process

at physical time 2.1 + 2 = 4.1, where 2 is the do of the
second set of network interface. Since the strategy C does not
assume events arrive in time stamp order across platforms,
even though events are present at i3, i4, i5, we still have to wait
until physical time 4.1 to process the event at i3, as shown
in Fig. 6. Note, however, in Fig. 7, the strategy makes the
additional assumption that events arrive in time stamp order
across platforms, thus as soon as there is an event at each
port of i3, i4, i5, and the event at i3 has the smallest time
stamp, that event is processed. Again as in the last case, if
the ModelDelayD actor is changed from 2.5 to 2, strategy B
would still be able to meet the deadline for the event coming
from i3, while strategy C would not.

These traces show the strategy B is better compared to
strategy C, due to its more sophisticated scheme to test whether
an event is safe to process. However, note that we assumed
zero computation time for the safe-to-process analysis in both
cases, but the strategy C is much simpler than strategy B. Thus
depending on the amount of computational power available
and the input event trace, different conditions may require
different strategies as to which one would make better use
of the computational resource.

V. FEASIBILITY ANALYSIS

In this section we present sufficient conditions for a PTIDES
implementation that applies strategy C to meet the real-time
constraints defined in Sec. III-A. Since in this paper we study
event safe-to-process analysis but do not focus on further event
scheduling, in this section we assume that events are processed
in zero time, i.e., actor execution takes zero time. We also
assume that communication latencies and time synchronization
errors between platforms are bounded and known. Meeting
real-time constraints under these assumptions is what we here
call feasibility property.

Let a discrete-event model M = (P, δ, d) be given with a
set of ports P , model-time delay function δ (as defined in Sec.
II-A) and physical-time delay function d (as defined in Sec.
III-D). Note that the underlying graph of actors is given with
the function δ. As explained in Sec. III-A, sensor and network
latencies define the function d.

A trace of a model is a set of all events e = (p, τ, t)
generated during an execution of the model, where p is event
port, τ is timestamp of the event and t is physical time at
which the event becomes available at the port p (is inserted in
its queue).

Definition. Discrete-event model M is feasible if for each
trace π of M such that each event of π at real-time output
port satisfies condition III-A:(2), each event of π at real-time
input port satisfies condition III-A:(1).

Before we discuss model feasibility in general case, we
illustrate the sufficient condition for the simple model shown
in Fig. 8a). Assume that the sensor maximum physical time
delay do is smaller than the model-time delay δ(i1, i2). Let
event e2 = (i2, τ2, t2) be an event at port i2 generated
by processing the event e1 = (i1, τ1, t1) at port i1. From
strategy C and the real-time output port assumption III-A:(2)
we have t2 = max{t1, τ1 + do − δ(i1, i2) + δ0(i1, i2)} =
max{t1, τ1 + do} = τ1 + do. Moreover, using the assumption

do ≤ δ(i1, i2) and the properties of the function δ we have
τ1 + do ≤ τ1 + δ(i1, i2) ≤ τ2. Therefore, if do ≤ δ(i1, i2)
then t2 ≤ τ2, i.e., the real-time input port constraint III-A:(1)
is satisfied. According to the definition given above the model
is feasible.

d0

Sensor ActuatorComputation

δ (i1, i2)
i1 i2a)

)(iid δ≤

do3 i2
do2

Network Interface
Computation Sensor

o3

i2' i1' o2

),(210 iid δ≤

do1 i1

i3

i4 i5

b)
Sensor

Computation Actuator

o1

o3

i3' o4

),()},(),(),,(),(,max{ 5141043034104221 iioioodoioodd ooo δδδδδ ≤+−+−

Fig. 8. Feasibility analysis illustration. Conditions are given for i1.

The feasibility conditions that we propose next can inde-
pendently be checked for each platform. Thus, to simplify the
notation we first define the local model-time delay function
δ : P × P → R+ ∪ {∞}. For two ports p1, p2 ∈ P we
have δ(p1, p2) = δ(p1, p2) if p1 and p2 belong to the same
platform, or δ(p1, p2) = ∞ otherwise. In addition, let O and
I denote the sets of real-time output and real-time input ports
respectively. We call a path from a real-time output port to a
real-time input port a real-time path.

Proposition. Model M = (P, δ, d) is feasible if for each
input port i on a real-time path

max
o∈G(i)
o∈O

{d(o)− δ(o, o) + δ0(i, o)} ≤ min
i∈I

{δ(i, i)}.

The inequalities in Fig. 8 show feasibility conditions for port
i1 in two different models.

Proof. Let π be a trace of the model M . Assume first that
all events in π are generated by processing at most one event
(from π). Let i ∈ I be an arbitrary real-time input port of
the model and let π = (e1, e2, ..., en) be a sequence of events
ek = (ik, τk, tk) at input ports ik (k = 1, ..., n) such that
ek is generated by processing ek−1 (k = 2, ..., n), in = i
and i1 is connected to a real-time output port. Note that there
are no assumptions about the topology of the model, i.e., the
underlying model graph can contain cycles. For instance, for
a model shown in Fig. 8b) a sequence of input ports in π can
be (i1, i2, i3, i2, i3, i4, i5). To prove the proposition we prove
that tn ≤ τn.

Lemma. For 1 < j ≤ n it holds

tj = max
1<k≤j

{τk−1 + max
o∈G(ik−1)

o∈O

{d(o)− δ(o, o) + δ0(ik−1, o)}

Lemma Proof. Note first that for 1 ≤ j < n it follows from
the strategy C discussed in Sec. III-D

tj+1 = max{tj , τj + max
o∈G(ij)

o∈O

{d(o)− δ(o, o) + δ0(ij , o)}

We use induction to prove the lemma. By the properties of
the real-time output port connected to i1 ∈ G(i1) we have
(III-A:(2))

τ1 + max
o∈G(i1)

o∈O

{d(o)− δ(o, o) + δ0(i1, o)} = τ1 + do ≥ t1,

t2 = max{t1, τ1 + max
o∈G(i1)

o∈O

{d(o)− δ(o, o) + δ0(i1, o)}}

= τ1 + max
o∈G(i1)

o∈O

{d(o)− δ(o, o) + δ0(i1, o)}.

For the inductive step, first assume

tj = max
1<k≤j

{τk−1 + max
o∈G(ik−1)

o∈O

{d(o)− δ(o, o) + δ0(ik−1, o)}.

Therefore,

tj+1 = max{ max
1<k≤j

{τk−1+ max
o∈G(ik−1)

o∈O

{d(o)−δ(o, o)+δ0(ik−1, o)}},

τj + max
o∈G(ij)

o∈O

{d(o)− δ(o, o) + δ0(ij , o)}.

= max
1<k≤j+1

{τk−1+ max
o∈G(ik−1)

o∈O

{d(o)−δ(o, o)+δ0(ik−1, o)}. �

Using the Lemma we have

tn = max
1<k≤n

{τk−1 + max
o∈G(ik−1)

o∈O

{d(o)− δ(o, o) + δ0(ik−1, o)},

= τK + max
o∈G(iK)

o∈O

{d(o)− δ(o, o) + δ0(iK , o)},

for a certain K (1 ≤ K < n). Thus, from the proposition
assumption and the properties of the δ (i.e., δ) function we
have (III-A:(1))

tn ≤ τK + min
i∈I

{δ(iK , i)} ≤ τK + δ(iK , in) ≤ τn.

In general, some events of a trace may be produced by
processing multiple events. In that case these events must be
with the same time stamp and available at the ports of the same
port group. The proof would be similar as the one presented
above, except that it would consist of the analysis on a tree
structure instead of on the sequence π. �

VI. SUMMARY AND FUTURE WORK

We first presented a general execution strategy that enables
correct event processing for timed models with discrete-
event semantics. In our model, the timing assumptions and
requirements for the components of a distributed embedded
system define relationships between model time and physical
time at real-time ports. Motivated by open and precise clock
synchronization protocols that are becoming available for dis-
tributed real-time systems, we next presented several instances
of the general execution strategy that make use of these rela-
tionships, clock synchronization and static program analysis.
The strategies allow independent events to be processed out

of time stamp order without backtracking and null message
mechanism.

We are developing a simulation environment for the
PTIDES programming model as an experimental domain in
Ptolemy II [5]. We are also working on two PTIDES imple-
mentations, one on a set of Linux-based Agilent demo boxes
equipped with the IEEE 1588 protocol, and the other using
real-time Java environments. Our future work also include
real-time schedulability problems for event schedulers without
the assumptions of the analysis in Sec. V.

REFERENCES

[1] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization
and Linearity: An Algebra for Discrete Event Systems. Wiley, 1992.

[2] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time
components in BIP. In SEFM, pages 3–12, Pune, 2006.

[3] A. Benveniste and G. Berry. The synchronous approach to reactive and
real-time systems. Proceedings of the IEEE, 79(9):1270–1282, 1991.

[4] K. M. Chandy and J. Misra. Distributed simulation: A case study in
design and verification of distributed programs. IEEE Transaction on
Software Engineering, 5(5), 1979.

[5] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong. Taming heterogeneity—the Ptolemy
approach. Proceedings of the IEEE, 91(2):127–144, 2003.

[6] T. H. Feng and E. A. Lee. Real-time distributed discrete-event execution
with fault tolerance. In Proceedings of RTAS, April 2008.

[7] R. M. Fujimoto. Parallel discrete event simulation. Commun. ACM,
33(10):30–53, 1990.

[8] IEEE. 1588: IEEE standard for a precision clock synchronization
protocol for networked measurement and control systems, 2002.

[9] A. Jantsch and I. Sander. Models of computation and languages for
embedded system design. IEEE Proceedings on Computers and Digital
Techniques, 152(2):114–129, 2005.

[10] D. Jefferson. Virtual time. ACM Trans. Programming Languages and
Systems, 7(3):404–425, 1985.

[11] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-
integrated development of embedded software. Proceedings of the IEEE,
91(1):145–164, 2003.

[12] E. A. Lee. Discrete event models: Getting the semantics right. In
Proceedings of WSC. Winter Simulation Conference, 2006.

[13] E. A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.
[14] E. A. Lee and H. Zheng. Leveraging synchronous language principles for

heterogeneous modeling and design of embedded systems. In EMSOFT,
Salzburg, Austria, 2007. ACM.

[15] B. D. Lubachevsky. Bounded lag distributed discrete event simulation.
In Proceedings of the SCS Multiconference on Distributed Simulation,
volume 19, San Diego, CA, 1988.

[16] R. Münzenberger, M. Drfel, R. Hofmann, and F. Slomka. A general time
model for the specification and design of embedded real-time systems.
Microelectronics Journal, 34:989–1000, 2003.

[17] K. Strehl, L. Thiele, M. Gries, D. Ziegenbein, R. Ernst, and J. Teich.
Funstatean internal design representation for codesign. IEEE Trans. on
VLSI Systems, 9(4):524–544, 2001.

[18] Y. Zhao, J. Liu, and E. A. Lee. A programming model for time-
synchronized distributed real-time systems. In Proceedings of RTAS,
pages 259–268, Bellevue, WA, USA, Apr 2007.

[19] Y. Zhou and E. A. Lee. Causality interfaces for actor networks. ACM
Transactions on Embedded Computing Systems (TECS), 2008.

