
Scalable Models Using

Model Transformation

Thomas Huining Feng
Ph.D. Student, UC Berkeley

Edward A. Lee
Robert S. Pepper Distinguished Professor, UC Berkeley

1st International Workshop on Model Based Architecting and Construction of

Embedded Systems (ACESMB 2008)

September 29, 2008

Toulouse, France

Feng & Lee, Berkeley 2

Context: Chess: Center for Hybrid and

Embedded Software Systems

Principal Investigators

 Thomas Henzinger (EPFL)

 Edward A. Lee (Berkeley)

 Alberto Sangiovanni-Vincentelli (Berkeley)

 Shankar Sastry (Berkeley)

 Janos Sztipanovits (Vanderbilt)

 Claire Tomlin (Berkeley)

Executive Director

 Christopher Brooks

Associated Faculty

 David Auslander (Berkeley, ME)

 Ahmad Bahai (Berkeley)

 Ruzena Bajcsy (Berkeley)

 Gautam Biswas (Vanderbilt)

 Ras Bodik (Berkeley, CS)

 Bella Bollobas (Memphis)

 Karl Hedrick (Berkeley, ME)

 Gabor Karsai (Vanderbilt)

 Kurt Keutzer (Berkeley)

 George Necula (Berkeley, CS)

 Koushik Sen (Berkeley, CS)

 Sanjit Seshia (Berkeley)

 Jonathan Sprinkle (Arizona)

 Masayoshi Tomizuka (Berkeley, ME)

 Pravin Varaiya (Berkeley)

This center, founded in 2002,

blends systems theorists and

application domain experts with

software technologists and

computer scientists.

Some Research Projects

 Precision-timed (PRET) machines

 Distributed real-time computing

 Systems of systems

 Theoretical foundations of CPS

 Hybrid systems

 Design technologies

 Verification

 Intelligent control

 Modeling and simulation

Applications

 Building systems

 Automotive

 Synthetic biology

 Medical systems

 Instrumentation

 Factory automation

 Avionics

the Berkeley directors of Chess

Feng & Lee, Berkeley 4

Model Transformation

Model-based design has used static structure models
such as UML class diagrams to provide meta models
that guide model-based design processes.

In this project, we are focusing more on actor
models, which more directly express concurrency
and system dynamics than what is possible with
static structure models. Inspired by prior work on
model-driven model transformation, we have
prototyped a model-transformation mechanism that is
actor-oriented.

Feng & Lee, Berkeley 5

Inspirations and Influences

 AGG [Taentzer, 1999]

 AToM3 [Lara, Vangheluwe, 2002]

 FUJABA [Nickel, Niere, Zündorf, 2000],

 GReAT [Agrawal, Karsai, Shi, 2003]

 OMG MOF QVT (Query/Views/Transformations)

 PROGRES [Schürr, Winter, Zündorf, 1995]

 VIATRA2 [Balogh, Varró, 2006]

Feng & Lee, Berkeley 6

Our Premise:

Components are Actors rather than Objects

The alternative: Actor oriented:

actor name

data (state)

ports

Input data

parameters

Output data

What flows through

an object is

evolving data

class name

data

methods

call return

What flows through

an object is

sequential control

The established: Object-oriented:

Things happen to objects

Actors make things happen

Feng & Lee, Berkeley 7

Ptolemy II: Our Open-Source Laboratory for

Experiments with Actor-Oriented Design
http://ptolemy.org

Director from a library

defines component

interaction semantics

Large, behaviorally-

polymorphic component

library.

Visual editor supporting an abstract syntax

Type system for

transported data

Concurrency management supporting

dynamic model structure.

Feng & Lee, Berkeley 8

Approach: Concurrent Composition of Software Components,

which are themselves designed with Conventional Languages

(Java, C, C++ MATLAB, Python)

Feng & Lee, Berkeley 9

Key Prior Work from the Ptolemy Project:

1. Higher-Order Components

Examples of HoCs:

 Replicate a submodel

over an array of inputs

 Structured dataflow

components (case,

iterate, recursion)

 Mobile models

 Parameterizing

models with models

 Lifecycle models

Feng & Lee, Berkeley 10

Key Prior Work from the Ptolemy Project:

2. Composition Languages

Big Systems with Small Descriptions

System is {

Matrix(Component(2),20,3);

}

Component is {

param n;

port in[n*2+1];

port out[n*2+2];

} in {

Blue(n, in[1..n*2],

out[1..n*2]);

Green(n, in[n*2+1],

out[n*2+1]);

}

We have released a specification language

that we call “Ptalon” for such systems,

integrated into Ptolemy II [Cataldo 2006]

Feng & Lee, Berkeley 11

Demo: Pattern Matching and

Graph Transformation

Model transformation workflow specifies
iterative graph rewriting to transform the top-
right model into the bottom-left model.

Executing the

model at the left

transforms the top

model into the

bottom model.

Feng & Lee, Berkeley 12

Applications

 Model optimization

 Support programming idioms

 Scalable model construction

 Adapt to problem size or parallelism

 Product families

 A single model transforms to multiple products

 Design refactoring

 Common model transformations

 Workflow automation

 Configuration, composition, testing, versioning

shown

next

Feng & Lee, Berkeley 13

Scalable Model Construction:

MapReduce Pattern [Dean, Ghemawat, 2004]

This pattern is intended to exploit parallel computing

by distributing computations that fit the structure. The

canonical example constructs an index of words found

in a set of documents.

Data Split

Map

Map

Map

Reduce

Reduce

Reduce

Merge Result

Feng & Lee, Berkeley 14

A MapReduce Model in Ptolemy II

Inputs of web

documents

“contents of the
first document”

“contents of the
second document”

...
“contents of the

last document”

End of all

documents

false
false

...
true

Merged word-

counting outputs

{“contents”, 3}
{“first”, 1}

...
{“document”, 3}

Word-value

pairs

{“contents”, 1}
{“of”, 1}

...
{“document”, 1}

Feng & Lee, Berkeley 15

Complexity of the Model Structure

A configurable application with m Map actors and n

Reduce actors has O(m×n) connections. Inside each

actor, parameters need to be configured as well.

Feng & Lee, Berkeley 16

Observations

 The visual representation is only helpful for

small models.

 The construction process by visual editing is

tedious and error prone.

 Adapting the size of the model to varying

numbers of compute resources by visual

editing is unreasonable.

 Replacing the Map or Reduce actors with

alternative functions by visual editing is also

not reasonable.

Feng & Lee, Berkeley 17

Transformation Rule

Pattern Replacement

Map Map

Reduce Reduce

Pattern Replacement

Constraint: !Map.outputKeys.connectedPortList()
.contains(Reduce.inputKeys)

A transformation rule to connect a Map actor to a Reduce

actor

Map and Reduce are matchers to match

arbitrary actors with the specified ports.

Feng & Lee, Berkeley 18

Rule Application

Start with

<Rule, Source>

Redex found?

Yes
Not applicable

No

Constraints

satisfied?

Remove deleted

objects

Yes

No

Exit with

result model

Add new objects

Perform operations

Subgraph isomorphism

(an extension to the backtracking

algorithms in [Ull76] [CFSV04])

Generated XML change requests:

<deleteEntity name=“actor1”/>
<deleteRelation name=“relation1”/>

Generated XML change requests:

<entity name=“C” class=
“ptolemy.actor.lib.Const”>

<property name=“value” class=
“ptolemy.data.expr.Parameter”
value=“1”/>

</entity>

[Ull76] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM, 23(1), 1976.

[CFSV04] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph isomorphism algorithm for matching large

graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(10), 2004.

Feng & Lee, Berkeley 19

A Set of Transformation Rules

LinkMapReduceCreateMap CreateReduce

Feng & Lee, Berkeley 20

Model is built by repeatedly applying

transformation rules drawn from a set
Workflow mechanisms:

 Priority (AGG, AToM3)

 Imperative programs

(PROGRES)

 Story diagrams

(FUJABA)

 Control flow and data

flow (GReAT)

 Abstract State Machines

(VIATRA2)

 Ptolemy II models (our

approach)

LinkMapReduce

CreateMap

CreateReduce

LinkSplitMap

LinkReduceMerge

... (More)

Feng & Lee, Berkeley 21

The TransformationRule Actor

ReplacementPattern Correspondence

Encapsulates a transformation rule

Input:
modelInput – actor tokens that contain

model fragments

Output:

modelOutput – actor tokens that contain

transformation results

matched – whether the last

transformation was successful

This actor may be used in nearly any

Ptolemy model (dataflow, process

networks, discrete-events, etc.)

Actor provides a custom visual

interface for specifying model

transformations

Feng & Lee, Berkeley 22

Ptolemy II Model Defines a Workflow

This Ptolemy II

model creates

and executes a

MapReduce

application for a

parameterized

number of

machines.

Feng & Lee, Berkeley 23

Using Other MoCs

Here we have used

Event-Relationship

graphs [Schruben 83] to

specify the

transformation logic.

Feng & Lee, Berkeley 24

Summary

 Patterns, replacements, and workflows are all expressed

using the same target modeling language(s) as the

application.

 Mixing of modeling languages / models of computation (via

the Ptolemy II framework) is supported in the application,

patterns, replacements, and workflows.

 Visual syntaxes become more scalable and flexible.

 Applications

 Model optimization

 Scalable model construction

 Product families

 Design refactoring

 Workflow automation

 …

